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Abstract

A vast amount of data is generated in our society, encompassing an array of measurements,

accompanied by location and time information. This multivariate spatio-temporal data is used

to study important problems challenging today’s world including climate change and disease

spread. This research introduces new methods and frameworks with accompanying open-source

software to help in the analysis of multivariate spatio-temporal data.

The first contribution (Chapter 2) delivers diagnostic plots designed to understand the opti-

misers for high-dimensional projection pursuit. It provides computational tools to track the

optimisation progress and coverage of the parameter space. The second contribution (Chapter 3)

develops a new data structure, called cubble, for organising spatio-temporal data. Spatio-

temporal data are often split into multiple tables, each with different observation units, or

organised into a memory-inefficient single table combining all the data. The new data structure

organises the spatial and temporal components of the data into a single object, efficiently, and

allows pivoting separately into the spatial and temporal tables for different analyses. The third

contribution (Chapter 4) introduces a data pipeline for constructing indexes from multivariate

spatio-temporal data. While indexes from various domains use similar statistical methodologies

to summarize data into an index, a standardised workflow to systematically assemble indexes

is absent. This work bridges this gap by offering a unified framework and infrastructure to

modularise the steps in constructing an index.
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Chapter 1

Introduction

Multivariate spatio-temporal data are ubiquitous in our society. In finance and economics, stock

prices and economic indicators are tracked over time; in logistics, supermarkets collect product

level data to decide the optimal stock levels for different stores; in meteorology, weather stations

record climate variables to monitor climate change and its impact on agriculture, human health,

and natural disasters. Spatio-temporal data are observations recorded with time and geographic

location information. Multivariate means that multiple variables (e.g. temperature, precipitation,

wind speed and direction) are recorded. It is common for analytical methods to focus separately

on the aspects – time series analysis addresses temporal trends, spatial analysis examines

geographic patterns, and multivariate analysis models the relationship between the multiple

measured variables. However, all the three aspects are ideally considered together to tackle

contemporary problems, such as monitoring droughts which requires historical time-stamped

data to understand “normal” conditions for any spatial neighborhood, and the interactions

of precipitation, temperature and other variables. From multivariate spatio-temporal data,

decision-makers compute indexes constructed from these components to inform the public and

to determine when or if to take remedial action.

This research addresses the challenge of investigating multivariate spatio-temporal data together

and also independently, by providing new tools for organising, visualising and explaining

relationships. The illustration in Figure 1.1 shows how the three research topics are related

and provide solutions. The solutions are to provide easy ways to pivot between the three

components, to allow focusing on multivariate, or spatio-temporal components of the data
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CHAPTER 1. INTRODUCTION

and a new data pipelines for constructing indexes for monitoring different aspects of our

world using multiple variables. When fixing the time, the data are reduced to its spatial and

multivariate elements. When the spatial component represents observations, it can be analysed

using multivariate methods such as dimension reduction and the particular dimension reduction

technique investigated in this thesis is called projection pursuit. When the data are collected at

different locations in space, software from geo-informatics can be useful to analyse the spatial

aspect of the data. However, existing spatial and temporal data analysis software are built

upon different data formats. In order to combine spatial and temporal data for spatio-temporal

analysis, the spatial data need to duplicate observations at each time point. However, these

duplicates can lead to inefficiency for spatial analysis. This introduces the constant need to

combine and separate the two components to align with the existing software, creating frictions

in the data analysis. Multivariate spatio-temporal variables are often combined into a single

series for each location to produce an index series which can be used for decision making or

communicating conditions. But index definition and construction is vastly different in different

fields and different researchers making it difficult to understand how they might perform with

slight changes in the formula, or be affected by data quality issues and how competing indexes

compare.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A graphical summary of three directions to analyse multivariate spatio-temporal data in this
thesis: 1) explore the multivariate relationship between variables with the time being fixed,
2) explore spatial and temporal characteristics simultaneously when the observations are
collected at different locations, and 3) construct indexes with different designs to summarize
multivariate information.

1.1 Visual diagnostics for projection pursuit optimization

Many data, despite having different multivariate, spatial, and temporal features, can all be

categorised as multivariate spatio-temporal data. When there are only a few time snaps in the

data, we may treat each time snap as independent and apply multivariate methods to analyze

the variable relationship. Bivariate relationships, either linear or non-linear, can be represented

in a scatterplot matrix, however, it becomes complex when a certain relationship is attributed

to three or more variables. A dimension reduction technique called “projection pursuit” can

be used to find interesting structures in multivariate data by linear projection. Combined with

a visualisation technique called guided tour, it can show the data points smoothly transiting

from randomness to some interesting structures found by the algorithm. In projection pursuit,

multivariate data is transformed into a low dimensional space, typically 1D or 2D, using a

projection matrix. Each projection matrix corresponds to a projection of the data, on which

3



CHAPTER 1. INTRODUCTION

statistics, also called the index functions, can be computed. The projection pursuit algorithm

optimises the statistics on the set of orthonormal matrices to detect interesting patterns in the

data, such as clusters or outlines. In practice, however, the optimiser sometimes does not always

work as desired: it may fail unexpectedly, gets stuck at a local maximum, or approach the

maximum without reaching it. In this work, four diagnostic plots are proposed to track the

optimization algorithms in projection pursuit.

1.2 Cubble: A new spatio-temporal data structure

When multivariate spatio-temporal data contain only a collection of variables, the spatial and

temporal dimensions remain to be explored. Weather station data is one such example, where

the number of variables recorded depends on the instruments installed, while stations are

widely distributed spatially and daily data are available over years. Spatial and temporal data

analysis each provide tools for examining one dimension of the data, however, when working

with spatio-temporal data, researchers may switch their data among different forms (pure

spatial, pure temporal, or a combined table) to analyse the data. This presents a unique task of

coordinating the data and results from different formats, which is not the case when the data

all have a single observational unit. While the actual process to reshape the data may not be

difficult for a given audience, this repeated requirement to reorganise the data is disruptive from

a workflow perspective, forcing researchers to pause on the actual data analysis and turn to

transforming among different data formats. This research addresses this problem by proposing

a new data structure to organise spatio-temporal data in R so that different spatial and temporal

information can be easily accessed for exploratory data analysis.

1.3 A tidy framework for indexes

Multivariate spatio-temporal data can also be analysed as multivariate time series with fixed

observations. To visualize and explain this collection of multivariate time series, indexes

can be constructed to monitor the joint effect of multiple variables over time or to compare

information from different observations. Examples of such indexes can be found in monitoring

the environment (i.e. drought indexes and water quality indexes), measuring social development

(i.e. human development index and gender equality index), and making decisions on resource

allocation. While research institutes and government publish index values calculated according
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CHAPTER 1. INTRODUCTION

to standard practice, information should be made available to understand how the index may

behave under different data conditions and its implication for decision making. In this work,

we develop a general data pipeline to construct spatio-temporal indexes from multivariate data.

This provides researchers with a standard framework for constructing and analysing indexes,

including experimenting different parameter choices, adjusting steps in the index definition,

calculating uncertainty, and assessing index robustness. The design of the pipeline framework

is aligned with the tidy framework adopted by the tidyverse and tidymodel, allowing the

construction and analysis of indexes in a unified syntax, regardless of their application domains.

1.4 Thesis overview

The rest of the thesis is organized as follows: Chapter 2 presents the proposed visual diagnostics

plots designed to assess the optimisation in projection pursuit guided tour, along with the R

implementation, ferrn (Zhang et al. 2021). In Chapter 3, a novel data structure and the R

package, cubble (Zhang et al. 2023a), is introduced to organise spatio-temporal data, with

examples given to demonstrate its use in analysing weather station data. Chapter 4 proposes a

framework for constructing spatio-temporal indexes from data and the resulting data pipeline is

implemented in the package tidyindex (Zhang et al. 2023b). Chapter 5 concludes the thesis

and discusses potential future directions.
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Chapter 2

Visual Diagnostics for Constrained

Optimisation with Application to

Guided Tours

A guided tour helps to visualise high-dimensional data by showing low-dimensional projections

along a projection pursuit optimisation path. Projection pursuit is a generalisation of principal

component analysis in the sense that different indexes are used to define the interestingness

of the projected data. While much work has been done in developing new indexes in the

literature, less has been done on understanding the optimisation. Index functions can be noisy,

might have multiple local maxima as well as an optimal maximum, and are constrained to

generate orthonormal projection frames, which complicates the optimization. In addition,

projection pursuit is primarily used for exploratory data analysis, and finding the local maxima

is also useful. The guided tour is especially useful for exploration because it conducts geodesic

interpolation connecting steps in the optimisation and shows how the projected data changes as

a maxima is approached. This work provides new visual diagnostics for examining a choice of

optimisation procedure based on the provision of a new data object which collects information

throughout the optimisation. It has helped to diagnose and fix several problems with projection

pursuit guided tour. This work might be useful more broadly for diagnosing optimisers and

comparing their performance. The diagnostics are implemented in the R package ferrn.

7



CHAPTER 2. VISUAL DIAGNOSTICS FOR CONSTRAINED OPTIMISATION WITH APPLICATION TO
GUIDED TOURS

2.1 Introduction

Visualisation is widely used in exploratory data analysis (Tukey 1977; Unwin 2015; Healy 2018;

Wilke 2019). Presenting information in graphics often unveils insights that would otherwise

not be discovered and provides a more comprehensive understanding of the problem at hand.

Task-specific tools such as Li, Zhao, and Scheidegger (2020) show how visualisation can be

used to understand, for instance, the behaviour of the optimisation for the example of neural

network classification models. However, no general visualisation tool is available for diagnosing

optimisation procedures. The work presented in this paper brings visualization tools into

optimisation problems with the aim to better understand the performance of optimisers in

practice.

The focus of this paper is on the optimisation problem arising in the projection pursuit guided

tour (Buja et al. 2005), an exploratory data analysis technique used for detecting interesting

structures in high-dimensional data through a set of lower-dimensional projections (Cook et al.

2008). The goal of the optimisation is to identify the projection, represented by the projection

matrix, that gives the most interesting low-dimensional view. A view is said to be interesting if it

can show some structures of the data that depart from normality, such as bimodality, clustering,

or outliers.

The optimization challenges encountered in the projection pursuit guided tour problem are

common to those of optimization in general. Examples include the existence of multiple optima

(local and global), the trade-off between computational burden and proximity to the optima,

or dealing with noisy objective functions that might be non-smooth and non-differentiable (D.

Jones, Schonlau, and Welch 1998). The visualization tools, optimization methods, and conceptual

framework presented in this paper can therefore be applied to other optimization problems.

The remainder of the paper is organised as follows. The next section provides an overview of

optimisation methods, specifically random search and line search methods. A review of the

projection pursuit guided tour, an overview of the optimisation problem and, outlines of three

existing algorithms follows. The third section presents the new visual diagnostics, including the

design of a data structure to capture information during the optimisation, from which several

diagnostic plots are created. An illustration of how the diagnostic plots can be used to examine

the performance of different optimisers and guide improvements to existing algorithms is shown

8
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using simulated data. Finally, an explanation of the implementation in the R package, ferrn

(Zhang et al. 2021), is provided.

2.2 Optimisation methods

The type of optimisation problem considered in this paper is constrained optimization (Bertsekas

2014), assuming it is not possible to find a solution to the problem in the way of a closed-form.

That is, the problem consists in finding the minimum or maximum of a function f ∈ Lp in

the constrained space A, where Lp defines the vector space of function f , whose pth power is

integrable.

Gradient-based methods are commonly used to optimise an objective function, with the most

notable one being the gradient ascent (descent) method. Although these methods are popular,

they rely on the availability of the objective function derivatives. As will be shown in the next

section, the independent variables in our optimisation problem are the entries of a projection

matrix, and the computational time required to perform differentiation on a matrix could impede

the rendering of tour animation. In addition, some objective functions rely on the empirical

distribution of the data, which makes it in general not possible to get the gradient. Hence,

gradient-based methods are not the focus of this paper, and consideration will be given to

derivative-free methods.

Derivative-free methods (Conn, Scheinberg, and Vicente 2009; Rios and Sahinidis 2013), which

do not rely on the knowledge of the gradient, are more generally applicable. Derivative-free

methods have been developed over the years, where the emphasis is on finding, in most cases,

a near-optimal solution. Here we consider three derivative-free methods, two of which are

random search methods: creeping random search and simulated annealing, and the other one is

pseudo-derivative search.

Random search methods (Romeijn 2009; Zabinsky 2013; Andradóttir 2015) have a random

sampling component as part of their algorithms and have been shown to have the ability to

optimise non-convex and non-smooth functions. The initial random search algorithm, pure

random search (Brooks 1958), draws candidate points from the entire space without using any

information of the current position and updates the current position when an improvement

on the objective function is made. As the dimension of the space becomes larger, sufficient

sampling from the entire space would require a long time for convergence to occur, despite a
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guaranteed global convergence (Spall 2005). Various algorithms have thus been developed to

improve pure random search by either concentrating on a narrower sampling space or using a

different updating mechanism. Creeping random search (White 1971) is such a variation, where

a candidate point is generated within a neighbourhood of the current point. This makes creeping

random search faster to compute but global convergence is no longer guaranteed. On the other

hand, simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Bertsimas and Tsitsiklis 1993),

introduces a different updating mechanism. Rather than only updating the current point when

an improvement is made, it uses a Metropolis acceptance criterion, where worse candidates

still have a chance to be accepted. The convergence of simulated annealing algorithms has been

widely researched (Mitra, Romeo, and Sangiovanni-Vincentelli 1986; Granville, Krivánek, and

Rasson 1994) and the global optimum can be attained under mild regularity conditions.

The pseudo-derivative search uses a common search scheme in optimisation: line search. In

line search methods, users are required to provide an initial estimate x1 and, at each iteration,

a search direction Sk and a step size αk are generated. Then one moves on to the next point

following xk+1 = xk + αkSk and the process is repeated until the desired convergence is reached.

In derivative-free methods, local information of the objective function is used to determine the

search direction. The choice of step size also needs consideration, as inadequate step sizes might

prevent the optimisation method from converging to an optimum. An ideal step size can be

chosen by finding the value of αk ∈ R that maximises f (xk + αkSk) with respect to αk at each

iteration.

2.3 Projection pursuit guided tour

A projection pursuit guided tour combines two different methods (projection pursuit and guided

tour) to explore interesting features in a high-dimensional space. Projection pursuit, coined

by Friedman and Tukey (1974), detects interesting structures (e.g., clustering, outliers, and

skewness) in multivariate data via low-dimensional projections. Guided tour (Cook et al. 1995)

is one variation of a broader class of data visualisation methods, tour (Buja et al. 2005), which

displays high-dimensional data through a series of animated projections.

Let Xn×p be the data matrix with n observations in p dimensions. A d-dimensional projection is

a linear transformation from Rp into Rd defined as Y = X · A, where Yn×d is the projected data

and Ap×d is the projection matrix. We define f : Rn×d 7→ R to be an index function that maps
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the projected data Y onto a scalar value. This is commonly known as the projection pursuit

index function, or just index function, and is used to measure the “interestingness” of a given

projection. An interesting projection shows structures that are non-normal since theoretical

proofs from Diaconis and Freedman (1984) have shown that projections tend to be normal as

n and p approach infinity under certain conditions. There have been many index functions

proposed in the literature, here are a few examples: early indexes that can be categorised as

measuring the L2 distance between the projection and a normal distribution: Legendre index

(Friedman and Tukey 1974); Hermite index (Hall 1989); natural Hermite index (Cook, Buja,

and Cabrera 1993); chi-square index (Posse 1995) for detecting spiral structure; LDA index (Lee

et al. 2005) and PDA (Lee and Cook 2010) index for supervised classification; kurtosis index

(Loperfido 2020) and skewness index (Loperfido 2018) for detecting outliers in financial time

series; and most recently, scagnostic indexes (Laa and Cook 2020) for summarising structures

in scatterplot matrices based on eight scagnostic measures (Wilkinson, Anand, and Grossman

2005; Wilkinson and Wills 2008).

As a general visualisation method, tour produces animations of high-dimensional data via

rotations of low-dimensional planes. There are different versions depending on how the high-

dimensional space is investigated: grand tour (Cook et al. 2008) selects the planes randomly

to provide a general overview; manual tour (Cook and Buja 1997) gradually phases in and out

one variable to understand the contribution of that variable in the projection. Guided tour, the

main interest of this paper, chooses the planes with the aid of projection pursuit to gradually

reveal the most interesting projection. Given a random start, projection pursuit iteratively finds

bases with higher index values, and the guided tour constructs a geodesic interpolation between

these planes to form a tour path. Figure 2.1 shows a sketch of the tour path where the blue

squares represent planes (targets) selected by the projection pursuit optimisation, and the white

squares represent planes in the geodesic interpolation between targets. Mathematical details

of the geodesic interpolation can be found in Buja et al. (2005). (Note that the term frame used

in Buja’s paper refers to a particular set of orthonormal vectors defining a plane. This is also

conventionally referred to as a basis, which is used in this paper and the associated software.)

The aforementioned tour method has been implemented in the R package tourr (Wickham et al.

2011).
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Figure 2.1: An illustration for demonstrating the frames in a tour path. Each square (frame) represents
the projected data with a corresponding basis. Blue frames are returned by the projection
pursuit optimisation and white frames are constructed between two blue frames by geodesic
interpolation.

2.3.1 Optimisation in the tour

In projection pursuit, the optimisation aims at finding the global and local maxima that give

interesting projections according to an index function. That is, it starts with a given randomly

selected basis A1 and aims at finding an optimal final projection basis AT that satisfies the

following optimisation problem:

arg max
A∈A

f (X · A) s.t. A′A = Id , (2.1)

where f and X are defined as in the previous section, A is the set of all p-dimensional projection

bases, Id is the d-dimensional identity matrix, and the constraint ensures the projection bases, A,

to be orthonormal. It is worth noticing the following: 1) The optimisation is constrained, and

the orthonormality constraint imposes a geometrical structure on the bases space: it forms a

Stiefel manifold. 2) There may be index functions for which the objective function might not

be differentiable. 3) While finding the global optimum is the goal of the optimisation problem,

interesting projections may also appear in the local optimum. 4) The optimisation should be fast

to compute since the tour animation is viewed by the users during the optimisation.
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2.3.2 Existing algorithms

Three optimisers have been implemented in the tourr (Wickham et al. 2011) package: creeping

random search (CRS), simulated annealing (SA), and pseudo-derivative (PD). Creeping random

search (CRS) is a random search optimiser that samples a candidate basis Al in the neighbour-

hood of the current basis Acur by Al = (1 − α)Acur + αArand where α ∈ [0, 1] controls the radius

of the sampling neighbourhood and Arand is generated randomly. Al is then orthonormalised

to fulfil the basis constraint. If Al has an index value higher than the current basis Acur, the

optimiser outputs Al for a guided tour to construct an interpolation path. The neighbourhood

parameter α is adjusted by a cooling parameter: αj+1 = αj ∗ cooling before the next iteration

starts. The optimiser terminates when the maximum number of iteration lmax is reached before

a better basis can be found. The algorithm of CRS can be found in the appendix. Posse (1995)

has proposed a slightly different cooling scheme by introducing a halving parameter c. In his

proposal, α is only adjusted if the last iteration takes more than c times to find a better basis.

Simulated annealing (SA) uses the same sampling process as CRS but allows a probabilistic

acceptance of a basis with lower index value than the current one. Given an initial value of

T0 ∈ R+, the “temperature” at iteration l is defined as T(l) = T0
log(l+1) . When a candidate basis

fails to have an index value larger than the current basis, SA gives it a second chance to be

accepted with probability

P = min
{

exp
[
−| Icur − Il |

T(l)

]
, 1
}

,

where I(·) ∈ R denotes the index value of a given basis. This implementation allows the

optimiser to make a move and explore the basis space even if the candidate basis does not have

a higher index value. Hence it enables the optimiser to jump out of a local optimum. The second

algorithm in the appendix highlights how SA differs from CRS in the inner loop.

Pseudo-derivative (PD) search uses a different strategy than CRS and SA. Rather than randomly

sample the basis space, PD first computes a search direction by evaluating bases close to

the current basis. The step size is then chosen along the corresponding geodesic by another

optimisation over a 90 degree angle from −π/4 to π/4. The resulting candidate basis A∗∗ is

returned for the current iteration if it has a higher index value than the current one. The third

algorithm in the appendix summarises the inner loop of the PD.
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2.4 Visual diagnostics

A data structure for diagnosing optimisers in projection pursuit guided tour is first defined.

With this data structure, four types of diagnostic plots are presented.

2.4.1 Data structure for diagnostics

Three main pieces of information are recorded during the projection pursuit optimisation:

1) projection bases A, 2) index values I, and 3) state S. For CRS and SA, possible states

include random_search, new_basis, and interpolation. Pseudo-derivative (PD) has a

wider variety of states, including new_basis, direction_search, best_direction_search,

best_line_search, and interpolation. Multiple iterators index the information collected at

different levels: t is a unique identifier prescribing the natural ordering of each observation;

j and l are the counter of the outer and inner loop, respectively. Other parameters of interest

recorded, V, include method that tags the name of the optimiser, and alpha that indicates the

sampling neighbourhood size for searching observations. A matrix notation of the data structure

is presented as follows:
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where T′ = T + k J + lJ+1. Note that there is no output in iteration J + 1 since the optimiser does

not find a better basis in the last iteration and terminates. The final basis found is AT with index

value IT.

The data structure constructed above meets the tidy data principle (Wickham 2014) that requires

each observation to form a row and each variable to form a column. With tidy data structure,

data wrangling and visualisation can be significantly simplified by well-developed packages

such as dplyr (Wickham et al. 2022) and ‘ggplot2“ (Wickham 2016).

2.4.2 Diagnostic 1: Checking how hard the optimiser is working

A starting point of diagnosing an optimiser is to understand how many searches it has conducted,

i.e., we want to summarise how the index is increasing over iterations and how many basis need

to be sampled at each iteration. This is achieved using the function explore_trace_search():

a boxplot shows the distribution of index values for each try, where the accepted basis (cor-

responding to the highest index value) is always shown as a point. When there are only few

tries at a given iteration, showing the data points directly is preferred over the boxplot and this

is controlled via the cutoff argument. Additional annotations are added to facilitate better

reading of the plot, and these include 1) the number of points searched in each iteration can

be added as text label at the bottom of each iteration; 2) the anchor bases to interpolate are

connected and highlighted in a larger size; 3) the colour of the last iteration is in greyscale to

indicate no better basis found in this iteration.

Figure 2.2 shows an example of the search plot for CRS (left) and SA (right). Both optimisers

quickly find better bases in the first few iterations and then take longer to find one in the later

iterations. The anchor bases, the ones found with the highest index value in each iteration,

always have an increased index value in the optimiser CRS while this is not the case for SA. This

feature gives CRS an advantage in this simple example to quickly find the optimum.

2.4.3 Diagnostic 2: Examining the optimisation progress

Another interesting feature to examine is the changes in the index value between interpolating

bases since the projection on these bases is shown in the tour animation. Trace plots are created by

plotting the index value against time. Figure 2.3 presents the trace plot of the same optimisations

as Figure 2.2, and one can observe that the trace is smooth in both cases. It may seem bizarre
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Figure 2.2: A comparison of the searches by two optimisers: CRS (left) and SA (right) on a 2D projection
problem of a six-variable dataset, boa6 using the holes index. Both optimisers reach the final
basis with a similar index value, while it takes SA longer to find the final basis. In the earlier
iterations, optimisers quickly find a better basis to proceed, while in the later iterations, most
sampled bases fail to make an improvement on the index value, and a boxplot is used to
summarise the distribution of the index values. There is no better basis found in the last
iteration, 9 (left) and 15 (right), before reaching the maximum number of try and hence it is
colored grey. The color scale is from the customised botanical palette in the ferrn package.

at first sight that the interpolation sometimes passes bases with higher index values before it

decreases to a lower target. This happens because, on the one hand, the probabilistic acceptance

in SA implies that some worse bases will be accepted by the optimiser. In addition, the guided

tour interpolates between the current and target basis to provide a smooth transition between

projections, and sometimes a higher index value will be observed along the interpolation path.

This indicates that a non-monotonic interpolation cannot be avoided, even for CRS. Later, in

Section A problem of non-monotonicity, there will be a discussion on improving the non-monotonic

interpolation for CRS.

2.4.4 Diagnostic 3a: Understanding the optimiser’s coverage of the search

space

Apart from checking the search and progression of an optimiser, looking at where the bases

are positioned in the basis space is also of interest. Given the orthonormality constraint, the

space of projection bases Ap×d is a Stiefel manifold. For one-dimensional projections, this forms

a p-dimensional sphere. A dimensionality reduction method, e.g., principal component analysis,

is applied to first project all the bases onto a 2D space. In a projection pursuit guided tour

16



CHAPTER 2. VISUAL DIAGNOSTICS FOR CONSTRAINED OPTIMISATION WITH APPLICATION TO
GUIDED TOURS

0.80

0.85

0.90

0.95

1 14 32 42 50 646974
Time

In
de

x 
va

lu
e

0.80

0.85

0.90

0.95

1 19 36 58 76 91 113130 152172 205
Time

In
de

x 
va

lu
e

Figure 2.3: An inspection of the index values as the optimisation progress for two optimisers: CRS (left)
and SA (right). The holes index is optimised for a 2D projection problem on the six-variable
dataset boa6. Lines indicate the interpolation, and dots indicate new target bases generated
by the optimisers. Interpolation in both optimisation is smooth, while SA is observed to first
pass by some bases with higher index values before reaching the target bases in time 76-130.

optimisation, there are various types of bases involved: 1) The starting basis; 2) The search bases

that the optimiser evaluated to produce the anchor bases; 3) The anchor bases that have the

highest index value in each iteration; 4) The interpolating bases on the interpolation path; and

finally, 5) the end basis. The importance of these bases differs but the most important ones are

the starting, interpolating, and end bases. Sometimes, two optimisers can start with the same

basis but finish with bases of opposite signs. This happens because the projection is invariant

to the orientation of the basis, and so is the index value. However, this creates difficulties for

comparing the optimisers since the end bases will be symmetric to the origin. A sign flipping

step is conducted to flip the signs of all the bases in one routine if different optimisations finish

at opposite places.

Several annotations have been made to help understand this plot. As mentioned previously,

the original basis space is a high-dimensional sphere, and random bases on the sphere can be

generated via the geozoo (Schloerke 2016) package. We use PCA to project and visualize the

parameters/ bases in 2D. The centre of the 2D view is the first two PCs of the data matrix. It

theoretically should be a circle but may have some irregular edges due to finite sampling. Thus

the edge is smoothed by using a radius estimated as the largest distance from the centre to any

basis. In the simulation, the theoretical best basis is known and can be labelled to compare
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*
CRS PD

Figure 2.4: Search paths of CRS (brown) and PD (green) in the PCA-reduced basis space for 1D
projection problem on the five-variable dataset, boa5 using holes index. The basis space, a
5D unit sphere, is projected onto a 2D circle by PCA. The black star represents the theoretical
best basis the optimisers are aiming to find. All the bases in PD have been flipped for easier
comparison of the final bases, and a grey dashed line has been annotated to indicate the
symmetry of the two start bases.

how close to this that the optimisers stopped. Various aesthetics, i.e., size, alpha (transparency),

and colour, are applicable to emphasize critical elements and adjust for the presentation. For

example, anchor points and search points are less important, and hence a smaller size and alpha

are used. Alpha can also be applied on the interpolation paths to show start to finish from

transparent to opaque.

Figure 2.4 shows the PCA plot of CRS and PD for a 1D projection problem. Both optimisers

find the optimum, but PD gets closer. With the PCA plot, one can visually appreciate the nature

of these two optimisers: PD first evaluates points in a small neighbourhood for a promising

direction, while CRS evaluates points randomly in the search space to search for the next target.

There are dashed lines annotated for CRS, and it describes the interruption of the interpolation,

which will be discussed in detail in Section A problem of non-monotonicity.

2.4.5 Diagnostic 3b: Animating the diagnostic plots

Animation is another type of display to show how the search progresses from start to finish in

the space. Figure 2.5 shows the animated version (six frames from the animation if viewed in

pdf) of the PCA plot in Figure 2.4. An additional piece of information one can learn from this
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Figure 2.5: Six frames selected from the animated version of the previous plot. With animation, the
progression of the search paths from start to finish is better identified. CRS (brown) finishes
the optimisation quicker than PD (green) since there is no further movement for CRS in the
sixth frame. The full video of the animation can be found in the html version of the paper.

animation is that CRS finds its end basis quicker than PD since CRS finishes its search in the 5th

frame while PD is still making more progress.

2.4.6 Diagnostic 4a: The tour looking at itself

As mentioned previously, the original p × d dimension space can be simulated via randomly

generated bases in the geozoo (Schloerke 2016) package. While the PCA plot projects the

bases from the direction that maximises the variance, the tour plot displays the original high-

dimensional space from various directions using animation. Figure 2.6 shows some frames from

the tour plot of the same two optimisations in its original space.

2.4.7 Diagnostic 4b: Forming a torus

While the previous few examples have looked at the space of 1D basis in a unit sphere, this

section visualises the space of 2D basis. Recall that the columns in a 2D basis are orthogonal

to each other, so the space of p × 2 bases is a torus in the p-D space (Buja and Asimov 1986).

For p = 3 one would see a classical 3D torus shape as shown by the grey points in Figure 2.7.

The two circles of the torus can be observed to be perpendicular to each other and this can be

linked back to the orthogonality condition. Two paths from CRS and PD are plotted on top of
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Figure 2.6: Six frames selected from rotating the high-dimensional basis space, along with the same two
search paths from Figure 2.4 and Figure 2.5. The basis space in this example is a 5D unit
sphere, on which points (grey) are randomly generated via the CRAN package geozoo. The
full animation can be seen in the html version of the paper.

the torus and coloured in green and brown, respectively, to match the previous plots. The final

basis found by PD and CRS are shown in a larger shape and printed below, respectively:

[,1] [,2]

[1,] 0.001196285 0.03273881

[2,] -0.242432715 0.96965761

[3,] -0.970167484 -0.24226493

[,1] [,2]

[1,] 0.05707994 -0.007220138

[2,] -0.40196202 -0.915510160

[3,] -0.91387549 0.402230054

Both optimisers have found the third variable in the first direction and the second variable

in the second direction. Note, however, the different orientation of the basis, following from

the different sign in the second column. One would expect to see this in the torus plot as the

final bases match each other when projected onto one torus circle (due to the same sign in the

first column) and are symmetric when projected onto the other (due to the different sign in the
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Figure 2.7: Six frames selected from rotating the 2D basis space along with two search paths optimised by
PD (brown) and CRS (green). The projection problem is a 2D projection with three variables
using the holes index. The grey points are randomly generated 2D projection bases in the
space, and it can be observed that these points form a torus. The full video of the animation
can be found in the html version of the paper.

second column). In Figure 2.7, this can be seen most clearly in frame 5 where the two circles are

rotated into a line from our view.

2.5 Diagnosing an optimiser

In this section, several examples will be presented to show how the diagnostic plots discover

something unexpected in projection pursuit optimisation, and guide the implementation of new

features.

2.5.1 Simulation setup

Random variables with different distributions have been simulated as follows:

x1
d
= x8

d
= x9

d
= x10 ∼ N (0, 1) (2.2)

x2 ∼ 0.5N (−3, 1) + 0.5N (3, 1) (2.3)

Pr(x3) =


0.5 if x3 = −1 or 1

0 otherwise
(2.4)
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x4 ∼ 0.25N (−3, 1) + 0.75N (3, 1) (2.5)

x5 ∼ 1
3
N (−5, 1) +

1
3
N (0, 1) +

1
3
N (5, 1) (2.6)

x6 ∼ 0.45N (−5, 1) + 0.1N (0, 1) + 0.45N (5, 1) (2.7)

x7 ∼ 0.5N (−5, 1) + 0.5N (5, 1) (2.8)

Variables x1, x8 to x10 are normal noise with zero mean, and unit variance and x2 to x7 are

normal mixtures with varied weights and locations. All the variables have been scaled to

have overall unit variance before projection pursuit. The holes index (Cook et al. 2008), used

for detecting bimodality of the variables, is used throughout the examples unless otherwise

specified.

2.5.2 A problem of non-monotonicity

An example of non-monotonic interpolation has been given in Figure 2.3: a path that passes

bases with a higher index value than the target one. For SA, a non-monotonic interpolation

is justified since target bases do not necessarily have a higher index value than the current

one, while this is not the case for CRS. The original trace plot for a 2D projection problem,

optimised by CRS, is shown on the left panel of Figure 2.8, and one can observe that the non-

monotonic interpolation has undermined the optimiser to realise its full potential. Hence, an

interruption is implemented to stop at the best basis found in the interpolation. The right panel

of Figure 2.8 shows the trace plot after implementing the interruption, and while the first two

interpolations are identical, the basis at time 61 has a higher index value than the target in the

third interpolation. Rather than starting the next iteration from the target basis on time 65, CRS

starts the next iteration at time 61 on the right panel and reaches a better final basis.

2.5.3 Close but not close enough

Once the final basis has been found by an optimiser, one may want to push further in the close

neighbourhood to see if an even better basis can be found. A polish search takes the final

basis of an optimiser as the start of a new guided tour to search for local improvements. The

polish algorithm is similar to the CRS but with three distinctions: 1) a hundred rather than one

candidate bases are generated each time in the inner loop; 2) the neighbourhood size is reduced

in the inner loop, rather than in the outer loop; and 3) three more termination conditions have
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Figure 2.8: Comparison of the interpolation before and after implementing the interruption for the 2D
projection problem on boa6 data using holes index, optimised by CRS. On the left panel, the
basis with a higher index value is found during the interpolation but not used. On the right
panel, the interruption stops the interpolation at the basis with the highest index value for
each iteration and results in a final basis with a higher index value, as shown on the right
panel.

been added to ensure the new basis generated is distinguishable from the current one in terms

of the distance in the space, the relative change in the index value, and neighbourhood size:

1) the distance between the basis found and the current needs to be larger than 1e-3;

2) the relative change of the index value needs to be larger than 1e-5; and

3) the alpha parameter needs to be larger than 0.01.

Figure 2.9 presents the projected data and trace plot of a 2D projection, optimised by CRS and

followed by the polish step. The top row shows the initial projection, the final projection after

CRS, and the final projection after polish, respectively. The end basis found by CRS reveals the

four clusters in the data, but the edges of each cluster are not clean-cut. Polish works with this

end basis and further pushes the index value to produce clearer edges of the cluster, especially

along the vertical axis.

2.5.4 Seeing the signal in the noise

The holes index function used for all the examples before this section produces a smooth

interpolation, while this is not the case for all the indexes. An example of a noisy index

function for 1D projections compares the projected data, Yn×1, to a randomly generated normal
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Figure 2.9: Comparison of the projected data before and after using polishing for a 2D projection problem
on boa6 data using holes index. The top row shows the initial projected data and the final
views after CRS and polish search, and the second row traces the index value. The clustering
structure in the data is detected by CRS (top middle panel), but the polish step improves the
index value and produces clearer boundaries of the clusters (top right panel), especially along
the vertical axis. Note that the parameter max.tries is set to 400 in this experiment for
CRS to do its best.

distribution, Nn×1, using the Kolmogorov test. Let F.(n) be the empirical cumulative distribution

function (ECDF) with two possible subscripts, Y and N , representing the projected and randomly

generated data, and n denoting the number of observations, the Kolmogorov index IK(n), is

defined as:

IK(n) = max [FY(n)− FN (n)] .

With a non-smooth index function, two research questions are raised:

1) whether any optimiser fails to optimise this non-smooth index; and
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2) whether the optimisers can find the global optimum despite the presence of a local opti-

mum.

Figure 2.10 presents the trace and PCA plots of all three optimisers, and as expected, none of

the interpolated paths are smooth. There is barely any improvement made by PD, indicating

its failure in optimising non-smooth index functions. While CRS and SA have managed to

get close to the index value of the theoretical best, the trace plot shows that it takes SA much

longer to find the final basis. This long interpolation path is partially due to the fluctuation in

the early iterations, where SA tends to generously accept inferior bases before concentrating

near the optimum. The PCA plot shows the interpolation path and search points, excluding the

last termination iteration. Pseudo-Derivative (PD) quickly gets stuck near the starting position.

Comparing the amount of random search done by CRS and SA, it is surprising that SA does

not carry as many samples as CRS. Combining the insights from both the trace and PCA plot,

one can learn the two different search strategies by CRS and SA: CRS frequently samples in

the space and only make a move when an improvement is guaranteed to be made, while SA

first broadly accepts bases in the space and then starts the extensive sampling in a narrowed

subspace. The specific decision of which optimiser to use will depend on the index curve in the

basis space, but if the basis space is non-smooth, accepting inferior bases at first, as SA has done

here, can lead to a more efficient search in terms of the overall number of points evaluated.

The next experiment compares the performance of CRS and SA when a local maximum exists.

Two search neighbourhood sizes, 0.5 and 0.7, are compared to understand how a large search

neighbourhood would affect the final basis and the length of the search. Figure 2.11 shows 80

paths simulated using 20 seeds in the PCA plot, faceted by the optimiser and search size. With

CRS and a search size of 0.5, despite being the simplest and fastest, the optimiser fails in three

instances where the final basis lands neither near the local nor the global optimum. With a larger

search size of 0.7, more seeds have found the global maximum. Comparing CRS and SA for

a search size of 0.5, SA does not seem to improve the final basis found, despite having longer

interpolation paths. However, the denser paths near the local maximum are an indicator that SA

is working hard to examine if there is any other optimum in the basis space, but the relatively

small search size has diminished its ability to reach the global maximum. With a larger search

size, almost all the seeds (16 out of 20) have found the global maximum, and some final bases

are much closer to the theoretical best, as compared to the three other cases. This indicates that
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Figure 2.10: Comparison of the three optimisers in optimising Ink(n) index for a 1D projection problem
on a five-variable dataset, boa5. Both CRS and SA succeed in the optimisation, PD fails
to optimise this non-smooth index. Further, SA takes much longer than CRS to finish the
optimisation, but finishes off closer to the theoretical best.

SA, with a reasonable large search window, is able to overcome the local optimum and optimise

close towards the global optimum.

2.5.5 Reconciling the orientation

One interesting situation observed in the previous examples is that, for some simulations, as

shown on the left panel of Figure 2.12, the target basis is generated on the other half of the basis

space, and the interpolator seems to draw a straight line to interpolate. Bases with opposite

signs do not affect the projection and index value, but we would prefer the target to have the

same orientation as the current basis. The orientation of two bases can be computationally

checked by calculating the determinant – a negative value suggests the two bases have a different

orientation. For 1D bases, this can be corrected by flipping the sign on one basis. For higher

dimensions, it can be a bit more difficult because the orthonormality of the basis needs to be
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Figure 2.11: Comparing 20 search paths in the PCA-projected basis space faceted by two optimisers: CRS
and SA, and two search sizes: 0.5 and 0.7. The optimisation is on the 1D projection index,
Ink(n), for boa6 data, where a local optimum, annotated by the cross (x), is presented in
this experiment, along with the global optimum (*).

also maintained when an individual vector is flipped. Here, an orientation check is carried out

once a new target basis is generated, and the sign in the target basis will be flipped if a negative

determinant is obtained. The interpolation after implementing the orientation check is shown

on the right panel of Figure 2.12, where the unsatisfactory interpolation no longer exists.
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Figure 2.12: Comparison of the interpolation in the PCA-projected basis space before and after reconciling
the orientation of the target basis. Optimisation is on the 1D projection index, Ink(n), for
boa6 data using CRS with seed 2463. The dots represent the target basis in each iteration,
and the path shows the interpolation. On the left panel, one target basis is generated with
an opposite orientation to the current basis (hence appear on the other side of the basis
space), and the interpolator crosses the origin to perform the interpolation. The right panel
shows the same interpolation after implementing an orientation check, and the undesirable
interpolation disappears.

2.6 Implementation

This project contributes to the software development in two packages: a data collection object

is implemented in tourr (Wickham et al. 2011), while the visual diagnostics of the optimisers

is implemented in ferrn (Zhang et al. 2021). The functions in the ferrn (Zhang et al. 2021)

package are listed below:

• Main plotting functions:

– explore_trace_search() produces summary plots in Figure 2.2.

– explore_trace_interp() produces trace plots for the interpolation points in Fig-

ure 2.3.

– explore_space_pca() produces the PCA plot of projection bases on the reduced

space. Figure 2.4 includes the additional details of anchor and search bases, which can

be turned on by the argument details = TRUE. The animated version is produced

with argument animate = TRUE.
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– explore_space_tour() produces animated tour view on the full space of the projec-

tion bases in Figure 2.6.

• get_*() extracts and manipulates certain components from the existing data object.

– get_anchor() extracts target observations.

– get_basis_matrix() flattens all the bases into a matrix.

– get_best() extracts the observation with the highest index value in the data object.

– get_dir_search() extracts directional search observations for PD search.

– get_interp() extracts interpolated observations.

– get_interp_last() extracts the ending interpolated observations in each iteration.

– get_interrupt() extracts the ending interpolated observations and the target obser-

vations if the interpolation is .interrupted

– get_search() extracts search observations.

– get_search_count() extracts the count of search observations.

– get_space_param() produces the coordinates of the centre and radius of the basis

space.

– get_start() extracts the starting observation.

– get_theo() extracts the theoretical best observations, if given.

• bind_*() incorporates additional information outside the tour optimisation into the data

object.

– bind_theoretical() binds the theoretical best observation in simulated experiment.

– bind_random() binds randomly generated bases in the projection bases space to the

data object.

– bind_random_matrix() binds randomly generated bases and outputs in a matrix

format.

• add_*() provides wrapper functions to create ggprotos for different components for the

PCA plot

– add_anchor() for plotting anchor bases.

– add_anno() for annotating the symmetry of start bases.

– add_dir_search() for plotting the directional search bases with magnified distance.
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– add_end() for plotting end bases.

– add_interp() for plotting the interpolation path.

– add_interp_last() for plotting the last interpolation bases for comparing with target

bases when interruption is used.

– add_interrupt() for linking the last interpolation bases with target ones when inter-

ruption is used.

– add_search() for plotting search bases.

– add_space() for plotting the circular space.

– add_start() for plotting start bases.

– add_theo() for plotting theoretical best bases, if applicable.

• Utilities

– theme_fern() and format_label() for better display of the grid lines and axis for-

matting.

– clean_method() to clean up the name of the optimisers.

– botanical_palettes() is a collection of colour palettes from Australian native plants.

Quantitative palettes include daisy, banksia, and cherry, and sequential palettes contain

fern and acacia.

– botanical_pal() as the colour interpolator.

– scale_color_*() and scale_fill_*() for scaling the colour and fill of the plot.

2.7 Conclusion

This paper has provided several visual diagnostics that can be used for understanding a com-

plex optimisation procedure and are implemented in the ferrn package. The methods were

illustrated using the optimisers available for projection pursuit guided tour. Here the constraint

is the orthonormality condition of the projection bases, which corresponds to optimisation over

spheres and torii. The approach described broadly applies to other constrained optimisers.

Although the manifold in p-space might be different the diagnostic techniques are the same.

A researcher would begin by saving the path of the optimiser in a form required to input

into the ferrn package, as described in this paper. One might generally make more samples

from the constrained space upon which to assess and compare the optimisation paths. These

high-dimensional data objects can then be viewed using the tour.
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The progressive optimisation of a target function and its coverage of the search space can be

viewed in both reduced 2D space and the full space. These visualisations can lead to insights

for evaluating and comparing the performance of multiple optimisers operating on the same

task. They can provide a better understanding of existing methods or motivate the development

of new approaches. For example, we have compared how three optimisers perform when

maximising a non-smooth index function and have illustrated how the pseudo-derivative search

fails in this setting. The observations from our experiments have also been translated into

improved optimisation methods for the guided tour, e.g., we introduced the option to interrupt

the search if a better basis is found along the path.

This work might be considered an effort to bring transparency into algorithms. Although little

attention is paid by algorithm developers to providing ways to output information during

intermediate steps, this is an important component for enabling others to understand and

diagnose the performance. Algorithms are an essential component of artificial intelligence that

is used to make daily life easier. Interpretability of algorithms is important to guard against

aspects like bias and inappropriate use. The data object underlying the visual diagnostics here

is an example of what might be useful in algorithm development generally.
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Chapter 3

Cubble: An R Package for Organizing

and Wrangling Multivariate Spatio-

temporal Data

Multivariate spatio-temporal data refers to multiple measurements taken across space and time.

For many analyses, spatial and time components can be separately studied: for example, to

explore the temporal trend of one variable for a single spatial location, or to model the spatial

distribution of one variable at a given time. However for some studies, it is important to analyze

different aspects of the spatio-temporal data simultaneously, for instance, temporal trends of

multiple variables across locations. In order to facilitate the study of different portions or

combinations of spatio-temporal data, we introduce a new class, cubble, with a suite of functions

enabling easy slicing and dicing on different spatio-temporal components. The proposed cubble

class ensures that all the components of the data are easy to access and manipulate while

providing flexibility for data analysis. In addition, the cubble package facilitates visual and

numerical explorations of the data while easing data wrangling and modelling. The cubble

class and the tools implemented in the package are illustrated with examples from climate data

analysis.
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3.1 Introduction

Spatio-temporal data (Bivand et al. 2008; Lovelace, Nowosad, and Muenchow 2019; Pebesma

and Bivand 2019) has a spatial component referring to the location of each observation and a

temporal component that is recorded at regular or irregular time intervals. It may also include

multiple variables measured at each spatial and temporal values. With spatio-temporal data,

one can fix the time to explore the spatial features of the data, fix the spatial location/s to

explore temporal aspects, or dynamically explore the space and time simultaneously. In order

to computationally explore the spatial, temporal and spatio-temporal and multiple variable

aspects of such data, it needs to be stored in a data object that allows the user to query, group

and dissect all the different data faces.

The Comprehensive R Archive Network (CRAN) task view SpatioTemporal (Pebesma and

Bivand 2022) gathers information about R packages designed for spatio-temporal data and it

has a section on Representing data that lists existing spatio-temporal data representations used in

R. Among them, the spacetime package (Pebesma 2012) implements four S4 classes to handle

spatio-temporal data with different spatio-temporal layouts (full grid, sparse grid, irregular, and

trajectory). The stars package (Pebesma 2021) implements an S3 class built from dense arrays.

However, the data representation implemented in those packages might present certain chal-

lenges when applying the principles of tidy data (Wickham 2014) for data analysis. The concept

of tidy data is based on three principles regarding how data should be organized in tables to

facilitate easier analysis: 1) one observation a row, 2) one variable a column, and 3) one type of

observation a table. The third principle of tidy data is particularly relevant for spatio-temporal

data since these data are naturally observed at different units: the spatial locations and the

temporal units. While the tidyverse suite of R packages implements data wrangling and visual-

ization tools primarily focused on working with single tables, there are not many tools available

for handling relational data specifically for spatio-temporal data. This motivates a new design

to organise spatio-temporal data in a way that would make data wrangling, visualizing and

analyzing easier.

This paper presents the R package, cubble, which implements a new cubble class to organize

spatial and temporal variables as two forms of a single data object so that they can be wrangled

separately or combined, while being kept synchronized. Among the four spacetime layouts in
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Pebesma (2012), the cubble class can handle the full grid layout and the sparse grid layout. The

software is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-

project.org/package=cubble.

The rest of the paper is organized as follows: Section 3.2 presents the main design and func-

tionality of the cubble package. Section 3.3 explains how the cubble package deals with more

advanced considerations, including data matching and how the package fits with existing static

and interactive visualization tools. Moreover we also illustrate how the cubble package deals

with spatio-temporal data transformations. Section 3.4 uses primarily Australian weather station

data as examples to demonstrate the use of the package. An example of how the cubble package

handles Network Common Data Form (NetCDF) data is also provided. Section 3.5 discuss the

paper contributions and future directions.

3.2 The cubble package

The cubble class includes two subclasses: the spatial cubble and the temporal cubble, which can

be pivoted back and forth to focus on the two aspects of the spatio-temporal data, as illustrated

in Figure 3.1. This section provides an overview of the cubble package, including the cubble

class and its attributes, class creation and coercion, a summary of implemented functionality, the

compatibility with other spatial and temporal packages (sf and tsibble), and a comparison

with other spatio-temporal packages (stars and sftime).

3.2.1 The cubble class

The cubble class is an S3 class built on tibble that allows the spatio-temporal data to be wrangled

in two forms (subclasses):

• a spatial cubble with class c("spatial_cubble_df", "cubble_df")

• a temporal cubble with class c("temporal_cubble_df", "cubble_df")

In a spatial cubble object, spatial variables are organised as columns and temporal variables

are nested within a specialised ts column. For example, the spatial cubble object, cb_spatial

printed below, contains weather records of three airport stations from the Global Historical

Climatology Network Daily (GHCND) database (Menne et al. 2012). In this case, the spatial

cubble is convenient for wrangling the spatial variables:
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cb_spatial

# cubble: key: id [3], index: date, nested form

# spatial: [144.8321, -37.98, 145.0964, -37.6655], Missing CRS!

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866 <tibble>

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870 <tibble>

3 ASN00086282 145. -37.7 113. melbourne airport 94866 <tibble>

In a temporal cubble, temporal variables are expanded in the long form and spatial variables

are stored as a data attribute. The temporal cubble object, cb_temporal, contains the same

spatio-temporal data as the spatial cubble object, cb_spatial, but in a structure that is easier

for temporal analysis:

cb_temporal

# cubble: key: id [3], index: date, long form

# temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

id date prcp tmax tmin

<chr> <date> <dbl> <dbl> <dbl>

1 ASN00086038 2020-01-01 0 26.8 11

2 ASN00086038 2020-01-02 0 26.3 12.2

3 ASN00086038 2020-01-03 0 34.5 12.7

4 ASN00086038 2020-01-04 0 29.3 18.8

5 ASN00086038 2020-01-05 18 16.1 12.5

# i 25 more rows
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The cubble attributes

Both cubble objects inherit tibble’s attributes (which originates from data frames): class,

row.names, and names. Additionally, both have three specialised attributes: key, index, and

coords, where key and index are used as introduced in the tsibble package (Wang, Cook,

and Hyndman 2020). In cubble, the key attribute identifies the row in the spatial cubble (given

the internal use of tidyr::nest() for nesting), and when combined with the index argument,

it identifies the row in the temporal cubble. Currently, cubble only supports one variable as

the key. The accepted temporal classes for index includes the base R classes Date, POSIXlt,

POSIXct, as well as tsibble’s yearmonth, yearweek, and yearquarter classes. The coords

attribute represents an ordered pair of coordinates that can be either an unprojected pair of

longitude and latitude, or a projected easting and northing value. Moreover, temporal cubbles

have a special attribute called spatial to store the spatial variables. Shortcut functions are

available to extract attributes from the temporal cubble object, for example, spatial() for

extracting spatial variables:

spatial(cb_temporal)

# A tibble: 3 x 6

id long lat elev name wmo_id

<chr> <dbl> <dbl> <dbl> <chr> <dbl>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870

3 ASN00086282 145. -37.7 113. melbourne airport 94866

3.2.2 Creation and coercion

The spatial and temporal aspect of spatio-temporal data are often stored separately in the

database. For climate data, analysts may initially receive station metadata and then query the

time series based on the metadata. A (spatial) cubble object can be constructed from separate

spatial and temporal tables using the function make_cubble(). The three attributes key, index,

and coords need to be specified. The following code creates a spatial cubble from its spatial

component, stations and temporal component meteo:
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make_cubble(spatial = stations, temporal = meteo,

key = id, index = date, coords = c(long, lat))

# cubble: key: id [3], index: date, nested form

# spatial: [144.8321, -37.98, 145.0964, -37.6655], Missing CRS!

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866 <tibble>

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870 <tibble>

3 ASN00086282 145. -37.7 113. melbourne airport 94866 <tibble>

Other R spatio-temporal objects can be coerced into a cubble object with the function

as_cubble(). This includes a joined tibble or data.frame object, a NetCDF object, a stars

object (Pebesma 2021), and a sftime object (Teickner, Pebesma, and Graeler 2022). In the ex-

ample below, the spatial cubble object is created from climate_flat, which combines the

previousstations and meteo into a single tibble object:

climate_flat |> as_cubble(key = id, index = date, coords = c(long, lat))

# cubble: key: id [3], index: date, nested form

# spatial: [144.8321, -37.98, 145.0964, -37.6655], Missing CRS!

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866 <tibble>

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870 <tibble>

3 ASN00086282 145. -37.7 113. melbourne airport 94866 <tibble>

3.2.3 Functions and methods

The cubble package has several functions implemented for data wrangling and to facilitate data

analysis as summarized in Table 3.1. In addition, for each of the three cubble classes there are
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Category Functions
base R [, [[<-, names<-
tidyverse dplyr_row_slice, dplyr_col_modify, dplyr_reconstruct, select,

mutate, arrange, filter, group_by, ungroup, summarise, select, slice,
rowwise, rename, bind_rows, bind_cols, relocate, type_sum, the slice
family (slice_head, slice_tail, slice_max, slice_min, slice_sample)
and the join family (left_join, right_join, inner_join, full_join,
anti_join, semi_join)

cubble as_cubble, cubble, make_cubble, check_key, face_temporal,
face_spatial, unfold, key, key_vars, key_data, index, index_var,
coords, spatial, match_sites, match_spatial, match_temporal,
geom_glyph, geom_glyph_box, geom_glyph_line, make_spatial_sf,
make_temporal_tsibble, fill_gaps, and scan_gaps

Table 3.1: An overview of functions implemented in the cubble package, categorised into base R, tidyverse,
and cubble functions.

Class Method
cubble_df [[<-, dplyr_col_modify, key_data, key_vars, key,

print
spatial_cubble_df [, names<-, tbl_sum, dplyr_reconstruct,

dplyr_row_slice, face_spatial, face_temporal,
unfold, arrange, rename, rowwise, group_by,
ungroup, select, spatial, summarise, unfold,
update_cubble

temporal_cubble_df [, names<-, tbl_sum, arrange, dplyr_reconstruct,
dplyr_row_slice, face_spatial, face_temporal,
unfold, fill_gaps, group_by, ungroup, rename,
rowwise, scan_gaps, select, spatial, summarise,
tbl_sum, bind_rows, bind_cols, update_cubble

Table 3.2: An overview of the methods implemented in the three cubble classes. Methods are imple-
mented in the cubble_df class when they behave consistently across the spatial and temporal
cubble; otherwise, they are implemented separately.

number of methods implemented that facilitates the handling of the data as shown in Table 3.2.

In particular, the cubble_df class handles methods that behave consistently in both spatial and

temporal cubble. When the method works differently internally on the spatial and temporal

cubble, it is implemented separately in spatial_cubble_df and temporal_cubble_df.

The pair of cubble verbs, face_temporal() and face_spatial(), pivots the cubble object

between its two forms or faces, as illustrated in Figure 3.1. The code applies face_temporal()

on the spatial cubble, cb_spatial, introduced in Section 3.2.1 to get a temporal cubble:

face_temporal(cb_spatial)
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# cubble: key: id [3], index: date, long form

# temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

id date prcp tmax tmin

<chr> <date> <dbl> <dbl> <dbl>

1 ASN00086038 2020-01-01 0 26.8 11

2 ASN00086038 2020-01-02 0 26.3 12.2

3 ASN00086038 2020-01-03 0 34.5 12.7

4 ASN00086038 2020-01-04 0 29.3 18.8

5 ASN00086038 2020-01-05 18 16.1 12.5

# i 25 more rows

Both verbs are the exact inverse of each other and apply both functions on a cubble object will

result in the object itself:

face_spatial(face_temporal(cb_spatial))

# cubble: key: id [3], index: date, nested form

# spatial: [144.8321, -37.98, 145.0964, -37.6655], Missing CRS!

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866 <tibble>

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870 <tibble>

3 ASN00086282 145. -37.7 113. melbourne airport 94866 <tibble>

To enable operations involve both spatial and temporal variables, the function unfold incorpo-

rates spatial variables into the temporal cubble. Below is an example to include the coordinate

columns (long and lat) into cb_temporal to prepare the data for a glyph map transformation,

which will be discussed in Section 3.3.3.
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Figure 3.1: Illustration of main functions. To focus on he temporal variables face_temporal()
converts a spatial cubble into a temporal cubble. To focus on the spatial variables
face_spatial() transforms a temporal cubble into a spatial cubble. This pivoting makes
it easy to separately do spatial or temporal analysis.

cb_temporal |> unfold(long, lat)

# cubble: key: id [3], index: date, long form

# temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

id date prcp tmax tmin long lat

<chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ASN00086038 2020-01-01 0 26.8 11 145. -37.7

2 ASN00086038 2020-01-02 0 26.3 12.2 145. -37.7

3 ASN00086038 2020-01-03 0 34.5 12.7 145. -37.7

4 ASN00086038 2020-01-04 0 29.3 18.8 145. -37.7

5 ASN00086038 2020-01-05 18 16.1 12.5 145. -37.7

# i 25 more rows

3.2.4 Compatibility with tsibble and sf

Analysts often have their preferred spatial or temporal data structure for spatial or temporal

analysis, which they may wish to continue using for spatio-temporal analysis. With cubble,

analysts can incorporate the tsibble class in a temporal cubble and the sf class in a spatial

cubble.
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Using a tsibble object as the temporal component

The key and index arguments in a cubble object corresponds to the tsibble counterparts and

they can be safely omitted, if the temporal component is a tsibble object (tbl_ts). The tsibble

class (tbl_ts) from the input will be carried over to the temporal cubble, indicated by the

[tsibble] in the header and in the object class:

class(meteo_ts)

[1] "tbl_ts" "tbl_df" "tbl" "data.frame"

ts_spatial <- make_cubble(

spatial = stations, temporal = meteo_ts, coords = c(long, lat))

(ts_temporal <- face_temporal(ts_spatial))

# cubble: key: id [3], index: date, long form, [tsibble]

# temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

id date prcp tmax tmin

<chr> <date> <dbl> <dbl> <dbl>

1 ASN00086038 2020-01-01 0 26.8 11

2 ASN00086038 2020-01-02 0 26.3 12.2

3 ASN00086038 2020-01-03 0 34.5 12.7

4 ASN00086038 2020-01-04 0 29.3 18.8

5 ASN00086038 2020-01-05 18 16.1 12.5

# i 25 more rows

class(ts_temporal)

[1] "temporal_cubble_df" "cubble_df" "tbl_ts"

[4] "tbl_df" "tbl" "data.frame"

Methods applied to tsibble objects (tbl_ts) can also be applied to the temporal cubble objects,

for example, checking whether the data contain temporal gaps:
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ts_temporal |> has_gaps()

# A tibble: 3 x 2

id .gaps

<chr> <lgl>

1 ASN00086038 FALSE

2 ASN00086077 FALSE

3 ASN00086282 FALSE

The temporal component of a created temporal cubble can include class tbl_ts to also be a

tsibble object tsibble object using make_temporal_tsibble(). See the code example below

using the cb_temporal object, created in Section 3.2.2:

cb_temporal |> make_temporal_tsibble()

# cubble: key: id [3], index: date, long form, [tsibble]

# temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

id date prcp tmax tmin

<chr> <date> <dbl> <dbl> <dbl>

1 ASN00086038 2020-01-01 0 26.8 11

2 ASN00086038 2020-01-02 0 26.3 12.2

3 ASN00086038 2020-01-03 0 34.5 12.7

4 ASN00086038 2020-01-04 0 29.3 18.8

5 ASN00086038 2020-01-05 18 16.1 12.5

# i 25 more rows

Using an sf object as the spatial component

Similarly, the spatial component of a cubble object can be an sf object and if the coords argument

is omitted, it will be calculated from the sf geometry. The sf status is signalled by the [sf] label

in the cubble header:
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(sf_spatial <- make_cubble(

spatial = stations_sf, temporal = meteo,

key = id, index = date))

# cubble: key: id [3], index: date, nested form, [sf]

# spatial: [144.8321, -37.98, 145.0964, -37.6655], WGS 84

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id elev name wmo_id long lat geometry

<chr> <dbl> <chr> <dbl> <dbl> <dbl> <POINT [°]>

1 ASN00086038 78.4 esse~ 95866 145. -37.7 (144.9066 -37.7276)

2 ASN00086077 12.1 moor~ 94870 145. -38.0 (145.0964 -37.98)

3 ASN00086282 113. melb~ 94866 145. -37.7 (144.8321 -37.6655)

# i 1 more variable: ts <list>

class(sf_spatial)

[1] "spatial_cubble_df" "cubble_df" "sf"

[4] "tbl_df" "tbl" "data.frame"

This allows applying functions from the sf package to a cubble object, for example, to handle

coordinate transformation with st_transform():

sf_spatial |> sf::st_transform(crs = "EPSG:3857")

# cubble: key: id [3], index: date, nested form, [sf]

# spatial: [16122635.6225205, -4576600.8687746, 16152057.3639371,

# -4532279.35567565], WGS 84

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id elev name wmo_id long lat geometry

<chr> <dbl> <chr> <dbl> <dbl> <dbl> <POINT [°]>

1 ASN00086038 78.4 esse~ 95866 145. -37.7 (16130929 -4541016)

2 ASN00086077 12.1 moor~ 94870 145. -38.0 (16152057 -4576601)

3 ASN00086282 113. melb~ 94866 145. -37.7 (16122636 -4532279)

# i 1 more variable: ts <list>
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The spatial component of a created cubble can also be an sf object using make_spatial_sf():

cb_spatial |> make_spatial_sf()

# cubble: key: id [3], index: date, nested form, [sf]

# spatial: [144.8321, -37.98, 145.0964, -37.6655], WGS 84

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00086038 145. -37.7 78.4 essendon airport 95866 <tibble>

2 ASN00086077 145. -38.0 12.1 moorabbin airport 94870 <tibble>

3 ASN00086282 145. -37.7 113. melbourne airport 94866 <tibble>

# i 1 more variable: geometry <POINT [°]>

Comparison to other spatio-temporal classes

In R, there are other existing spatio-temporal data structures and this section compares and

contrasts cubble with other existing alternatives, specifically stars and sftime. The stars

package (Pebesma 2021) uses an array structure, as opposed to a tibble, to represent multivariate

spatio-temporal data. While both stars and cubble support vector and raster data, it is a

matter of choice on which structure to use given the application. Analysts working on satellite

imageries may prefer the array structure in stars, while others originally working with spatio-

temporal data in 2D data frames may find cubble easier to adopt from their existing computing

workflow.

The sftime package (Teickner, Pebesma, and Graeler 2022) also builds from a tibble object and

its focus is on handling irregular spatio-temporal data. This means sftime can also handle full

space-time grids and sparse space-time layouts represented in cubble. However, cubble uses

nesting to avoid storing spatial variables repetitively at each timestamp. This provides memory

efficiency when data is observed frequently, i.e. daily or sub-daily, or the spatial geometry is

computationally expensive to store repeatedly, i.e. polygons or multipolygons. Consider the

climate_aus data in the cubble package with 639 stations observed daily throughout the year

2020. In that case, the sftime object is approximately 14 times larger than the corresponding

cubble object (118 MB vs. 8.5 MB).
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3.3 Other features and considerations

3.3.1 Spatial and temporal matching

A useful task in spatio-temporal data analysis is to combine related temporal series within a

close geographic neighborhood. For example, we may want to examine data from weather

stations with water flow records from nearby river sensors to understand how precipitation

relates to river levels. This might be useful for predicting potential for droughts and floods.

Matching temporal data across different locations from different data sources could be done by

initially identifying the corresponding spatial locations between the two data sets. Subsequently,

a set of temporal features can be calculated for the series at the selected locations that can be

used to matched the selected time series across locations. In cubble, locations from two datasets

can be matched using the function match_spatial(). The function calculates the distance

matrix of the locations between the two data sets and returns groups (spatial_n_group) with

the smallest distances. For a given group, it is possible can include more locations with the

argument spatial_n_each (default to 1 for one-on-one matching).

For the temporal matching a similarity score between the time series of spatially matched pairs

is computed using the function match_temporal(). The similarity score is computed by a

matching function which can be customized to any desired time series feature. The function

match_temporal() takes as argument two time series in the form of a list and returns a single

numerical value. By default, cubble uses a simple peak matching algorithm (match_peak) to

count the number of peaks in two time series that fall within a specified time window.

The temporal matching requires two identifiers: one for separating each spatially matched

group: match_id and one for separating the two data sources: data_id. Matching between

different variables can be specified using the temporal_by argument, similar to the by syntax

from dplyr’s *_join.

match_temporal(

<obj_from_match_spatial>,

data_id = ... , match_id = ...,

temporal_by = c("..." = "...")

)
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Figure 3.2: Linking between multiple plots is made possible by shared crosstalk objects. When a
station is selected on the map (a), the corresponding row in the spatial cubble will be
activated. This will activate the row with the same id in the temporal cubble (b) to trigger
an update of the line plot (c). The cubble package makes linking between spatial and temporal
plots easy.

3.3.2 Interactive graphics

The cubble workflow neatly allows building an interactive graphics pipeline (e.g., Buja et al.

(1988); Buja, Cook, and Swayne (1996); Sutherland et al. (2000); Xie, Hofmann, and Cheng (2014);

X. Cheng, Cook, and Hofmann (2016)), simplifying the data pre-processing and preparing the

ingredients for linked plots. Specifically, the spatial and temporal cubble correspond to the

spatial and temporal visualisation, such as a map or a time series plot, that can be linked using

functionality in the crosstalk (J. Cheng and Sievert 2021) package.

Figure 3.2 illustrates the linking mechanism between a map and multiple time series. When a

user selects a location on the map as shown on panel (a), the corresponding site is highlighted.

This selection activates a row in the spatial cubble, which is then connected to the temporal

cubble, resulting in the selection of all observations with the same ID as depicted in panel (b).

Consequently the temporal cubble highlights the corresponding series in the time series plot

displayed in panel (c). The linking can also be initiated from the time series plot by selecting

points on the time series graph. This action selects rows with the same ID in the temporal cubble

and the corresponding row in the spatial cubble so that points can be highlight on the map.
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3.3.3 Spatio-temporal transformations

Visualizing both space and time is important for exploring and understanding the data more

completely, aiding in decision-making, and facilitating effective communication. Several ap-

proaches are common: facet maps across time, map animations, or interactive graphics that link

maps and time series plots among others. Faceted maps and spatio-temporal animations focus

on the spatial pattern making it difficult to assess temporal trends. One alternative display is

a glyph map (Wickham et al. 2012), on which each spatial location is represented by one time

series line, referred to as a glyph, that traces the variable measured over time.

It is achieved through a coordinate transformation. The transformation uses linear algebra to

convert the temporal coordinates (minor coordinates) into the spatial coordinates (major coordi-

nates) and is implemented in the package GGally (Schloerke et al. 2021). The cubble package

provides a new ggproto implementation to create glyph maps, geom_glyph() requiring four

aesthetics : x_major, y_major, x_minor, and y_minor:

data |>

ggplot() +

geom_glyph(aes(x_major = ..., x_minor = ...,

y_major = ..., y_minor = ...))

Other useful controls to modify the glyph map that can be include are:

• the implementation of a polar coordinate glyph maps with polar = TRUE,

• the adjustment of the glyph size arguments using width and height,

• a transformation relative to all the series (global_rescale defaults to TRUE) or each single

series, and

• the use of the reference boxes and lines with geom_glyph_box() and geom_glyph_line().

3.4 Applications

Five examples are chosen to illustrate different aspects of the cubble package: creating a

cubble object from two Coronavirus disease (COVID-19) data tables with the challenge of

having different location names, using spatial transformations to make a glyph map of seasonal
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temperature changes, matching river level data with weather station records to analyze water

supply, reading NetCDF format data to replicate a climate reanalysis plot, and demonstrating

the workflow to create interactively linked plots.

3.4.1 Victoria COVID spatio-temporal incidence and spread

Since the start of the COVID-19 pandemic, the Victoria State Government in Australia has

been providing daily COVID-19 case counts per local government area (LGA). This data can

be combined with map polygon data, available from the Australian Bureau of Statistics (ABS),

to visualize COVID-19 incidence and spread. The COVID-19 count data (covid) and the LGA

information (lga) are available in the cubble package as a tsibble object and an sf object,

respectively. As is common, the different agencies have some difference in text id’s labelling

the spatial regions, so this example illustrates how this can be caught with cubble, and fixed.

Discrepancies are flagged when creating the cubble object, notifying analysts of something that

needs checking.

The by argument of the function make_cubble() is used to specify the spatial identifier in the

two data sets:

cb <- make_cubble(lga, covid, by = c("lga_name_2018" = "lga"))

Warning: st_centroid assumes attributes are constant over geometries

! Some sites in the spatial table don’t have temporal information

! Some sites in the temporal table don’t have spatial information

! Use ‘check_key()‘ to check on the unmatched key

The cubble is created only with sites having both spatial and

temporal information

The difference in LGA naming between both data sets triggers a warning, alerting the user

to this discrepancy. The warning message suggests there are some differences between the

LGA encoding used by Victoria government and ABS. The mismatches can be checked using

check_key(), which takes the same inputs as make_cubble(), but returns a summary of key

matches between the spatial and temporal input data:
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(check_res <- check_key(

spatial = lga, temporal = covid,

by = c("lga_name_2018" = "lga")

))

$paired

# A tibble: 78 x 2

spatial temporal

<chr> <chr>

1 Alpine (S) Alpine (S)

2 Ararat (RC) Ararat (RC)

3 Ballarat (C) Ballarat (C)

4 Banyule (C) Banyule (C)

5 Bass Coast (S) Bass Coast (S)

# i 73 more rows

$potential_pairs

# A tibble: 2 x 2

spatial temporal

<chr> <chr>

1 Kingston (C) (Vic.) Kingston (C)

2 Latrobe (C) (Vic.) Latrobe (C)

$others

$others$spatial

character(0)

$others$temporal

[1] "Interstate" "Overseas" "Unknown"
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attr(,"class")

[1] "key_tbl" "list"

The result of the check_key() function is a list containing three elements: 1) matched keys from

both tables, 2) potentially paired keys, and 3) others keys that can’t be matched. Here, the main

mismatch arises from the two LGAs: Kingston and Latrobe (Kingston is an LGA in both Victoria

and South Australia and Latrobe is an LGA in both Victoria and Tasmania). Analysts can then

reconcile the spatial and temporal data based on this summary and recreate the cubble object:

lga2 <- lga |>

rename(lga = lga_name_2018) |>

mutate(lga = ifelse(lga == "Kingston (C) (Vic.)", "Kingston (C)", lga),

lga = ifelse(lga == "Latrobe (C) (Vic.)", "Latrobe (C)", lga))

covid2 <- covid |> filter(!lga %in% check_res$others$temporal)

(cb <- make_cubble(spatial = lga2, temporal = covid2))

# cubble: key: lga [80], index: date, nested form, [sf]

# spatial: [140.961682, -39.1339581, 149.976291, -33.9960517], WGS

# 84

# temporal: date [date], n [dbl], avg_7day [dbl]

lga long lat geometry ts

<chr> <dbl> <dbl> <GEOMETRY [°]> <list>

1 Alpine (S) 147. -36.9 POLYGON ((146.7258 -36.45922, 1~ <tbl_ts>

2 Ararat (RC) 143. -37.5 POLYGON ((143.1807 -37.73152, 1~ <tbl_ts>

3 Ballarat (C) 144. -37.5 POLYGON ((143.6622 -37.57241, 1~ <tbl_ts>

4 Banyule (C) 145. -37.7 POLYGON ((145.1357 -37.74091, 1~ <tbl_ts>

5 Bass Coast (S) 146. -38.5 MULTIPOLYGON (((145.5207 -38.30~ <tbl_ts>

# i 75 more rows
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3.4.2 Australian historical maximum temperature

The Global Historical Climatology Network (GHCN) provides daily climate measures for

stations worldwide. In the cubble package, the cubble object historical_tmax contains daily

maximum temperature data for 75 stations in Australia, covering two periods: 1971-1975 and

2016-2020. This example uses dplyr verbs to wrangle a cubble object, and pivot between the

spatial and temporal form for different parts of the analysis. The result is glyph maps to compare

the changes in temperature between these two periods, created with ggplot2.

To prevent overlapping of weather stations on the map, stations are selected to ensure a mini-

mum distance of 50km. Distance between stations can be calculated with sf::st_distance()

after turning the spatial cubble to also be an sf object with make_spatial_sf():

a <- historical_tmax |> make_spatial_sf() |> st_distance()

a[upper.tri(a, diag = TRUE)] <- 1e6

(tmax <- historical_tmax |>

filter(rowSums(a < units::as_units(50, "km")) == 0))

# cubble: key: id [54], index: date, nested form

# spatial: [141.2652, -39.1297, 153.3633, -28.9786], Missing CRS!

# temporal: date [date], tmax [dbl]

id long lat elev name wmo_id ts

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list>

1 ASN00047016 141. -34.0 43 lake victoria storage 94692 <tibble>

2 ASN00047019 142. -32.4 61 menindee post office 94694 <tibble>

3 ASN00048015 147. -30.0 115 brewarrina hospital 95512 <tibble>

4 ASN00048027 146. -31.5 260 cobar mo 94711 <tibble>

5 ASN00048031 149. -29.5 145 collarenebri (albert ~ 95520 <tibble>

# i 49 more rows

The daily maximum temperature is then averaged into monthly series for each period within

the temporal cube. In the code above, the last step with unfold() moves the two coordinate
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columns (long, lat) into the temporal cubble, preparing the data for the construction of a

glyph map:

(tmax <- tmax |>

face_temporal() |>

group_by(

yearmonth = tsibble::make_yearmonth(

year = ifelse(lubridate::year(date) > 2015, 2016, 1971),

month = lubridate::month(date))

)|>

summarise(tmax = mean(tmax, na.rm = TRUE)) |>

mutate(group = as.factor(lubridate::year(yearmonth)),

month = lubridate::month(yearmonth)) |>

unfold(long, lat))

# cubble: key: id [54], index: yearmonth, long form

# temporal: 1971 Jan -- 2016 Dec [1M], has gaps!

# spatial: long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id

# [dbl]

yearmonth id tmax group month long lat

<mth> <chr> <dbl> <fct> <dbl> <dbl> <dbl>

1 1971 Jan ASN00047016 31.1 1971 1 141. -34.0

2 1971 Jan ASN00047019 33.1 1971 1 142. -32.4

3 1971 Jan ASN00048015 33.9 1971 1 147. -30.0

4 1971 Jan ASN00048027 32.5 1971 1 146. -31.5

5 1971 Jan ASN00048031 33.3 1971 1 149. -29.5

# i 1,276 more rows

The code below counts the number of observations for each location, revealing that there are

several with less than 24 observations – these stations lack temperature values for some months.

In this example, those stations are removed by switching to the spatial cubble to operate on the

spatial component over time, and then, move back into the temporal cubble (to make the glyph

map):
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tmax <- tmax |>

face_spatial() |>

rowwise() |>

filter(nrow(ts) == 24) |>

face_temporal()

The following code creates the glyph map (a) in Figure 3.3 (additional codes are needed for

highlighting the single station, Cobar and styling) and the glyph map (c) is produced similarly

after further processing the data.

nsw_vic <- ozmaps::abs_ste |>

filter(NAME %in% c("Victoria","New South Wales"))

tmax |>

ggplot(aes(x_major = long, x_minor = month,

y_major = lat, y_minor = tmax,

group = interaction(id, group))) +

geom_sf(data = nsw_vic, ..., inherit.aes = FALSE) +

geom_glyph_box(width = 0.8, height = 0.3) +

geom_glyph(aes(color = group), width = 0.8, height = 0.3) +

...

3.4.3 River levels and rainfall in Victoria

The Bureau of Meteorology collects water level data that can be matched with precipitation data

from climate weather stations. The data river from the cubble package contains water course

level data for 71 river gauges collected in Victoria, Australia. Victoria weather station data can

be subsetted from the climate_aus data in the cubble package. This example demonstrates

the use of the matching function introduced in Section 3.3.1 to find river gauges that mirror

changes in precipitation regimes captured in the climate weather stations in Victoria.
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Figure 3.3: Glyph maps comparing temperature change between 1971-1975 and 2016-2020 for 54
stations in Victoria and New South Wales, Australia. Overlaid line plots show monthly
temperature (a) where a hint of late summer warming can be seen. Transforming to tem-
perature differences (c) shows pronounced changes between the two periods. The horizontal
guideline marks zero difference. One station, Cobar, is highlighted in the glyph maps and
shown separately (b, d). Here the late summer (Jan-Feb) warming pattern, which is more
prevalent at inland locations, is clear.

climate_vic <- climate_aus |>

filter(between(as.numeric(substr(id, 7, 8)), 76, 90)) |>

mutate(type = "climate")

river <- cubble::river |> mutate(type = "river")

The first step is to perform a spatial match on the site locations between both data sets. The

rainfall recorded at a particular station can directly impact the water level in nearby rivers,

which emphasizes the need to find related or matching locations. With match_spatial(), we

can obtain a summary of the 10 closest pairs of weather stations and river gauges:
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res_sp <- match_spatial(df1 = climate_vic, df2 = river,

spatial_n_group = 10)

print(res_sp, n = 20)

# A tibble: 10 x 4

from to dist group

<chr> <chr> [m] <int>

1 ASN00088051 406213 1838. 1

2 ASN00084145 222201 2185. 2

3 ASN00085072 226027 3282. 3

4 ASN00080015 406704 4034. 4

5 ASN00085298 226027 4207. 5

6 ASN00082042 405234 6153. 6

7 ASN00086038 230200 6167. 7

8 ASN00086282 230200 6928. 8

9 ASN00085279 224217 7431. 9

10 ASN00080091 406756 7460. 10

The results can also be returned as a list of matched cubbles, by setting the argument

return_cubble = TRUE. After excluding the two pairs where a river station is matched to

more than one weather stations (river station 226027 is matched twice in group 3 and 5 and

similarly for station 230200 in group 7 and 8), all the results can be combined into a single cubble

using bind_rows(),

res_sp <- match_spatial(

df1 = climate_vic, df2 = river,

spatial_n_group = 10, return_cubble = TRUE)

(res_sp <- res_sp[-c(5, 8)] |> bind_rows())

# cubble: key: id [16], index: date, nested form, [sf]

# spatial: [144.5203, -38.144913, 148.4667, -36.128657], WGS 84

# temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]

id long lat elev name wmo_id ts type
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<chr> <dbl> <dbl> <dbl> <chr> <dbl> <list> <chr>

1 ASN00088051 145. -37.0 290 redesdale 94859 <tibble> clim~

2 406213 145. -37.0 NA CAMPASPE RIVER ~ NA <tibble> river

3 ASN00084145 148. -37.7 62.7 orbost 95918 <tibble> clim~

4 222201 148. -37.7 NA SNOWY RIVER @ O~ NA <tibble> river

5 ASN00085072 147. -38.1 4.6 east sale airpo~ 94907 <tibble> clim~

# i 11 more rows

# i 3 more variables: geometry <POINT [°]>, group <int>, dist [m]

To match the water level and precipitation time series across the matched locations, the function

match_temporal() is used with the variables group and type identifying the matching group

and the two data sources:

(res_tm <- match_temporal(data = res_sp,

data_id = type, match_id = group,

temporal_by = c("prcp" = "Water_course_level")))

# A tibble: 8 x 2

group match_res

<int> <dbl>

1 1 30

2 2 5

3 3 14

4 4 20

5 6 23

# i 3 more rows

Similarly, the cubble output can be returned using the argument ‘return_cubble = TRUE}. Here,

we select the four pairs of time series (precipitation/water level) with the highest number of

matching peaks and show them on the map (Figure 3.4 a). The time series of river levels is

standardized to make the comparison easier in panel (b).
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res_tm <- match_temporal(data = res_sp,

data_id = type, match_id = group,

temporal_by = c("prcp" = "Water_course_level"),

return_cubble = TRUE)

(res_tm <- res_tm |> bind_rows() |> filter(group %in% c(1, 7, 6, 9)))

# cubble: key: id [8], index: date, nested form, [sf]

# spatial: [144.5203, -37.8817, 147.572223, -36.8472], WGS 84

# temporal: date [date], matched [dbl]

id long lat elev name wmo_id type geometry

<chr> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <POINT [°]>

1 ASN0~ 145. -37.0 290 rede~ 94859 clim~ (144.5203 -37.0194)

2 4062~ 145. -37.0 NA CAMP~ NA river (144.5403 -37.01512)

3 ASN0~ 146. -36.8 502 stra~ 95843 clim~ (145.7308 -36.8472)

4 4052~ 146. -36.9 NA SEVE~ NA river (145.6828 -36.88701)

5 ASN0~ 145. -37.7 78.4 esse~ 95866 clim~ (144.9066 -37.7276)

# i 3 more rows

# i 4 more variables: group <int>, dist [m], ts <list>,

# match_res <dbl>

3.4.4 ERA5: climate reanalysis data

The ERA5 reanalysis (Hersbach et al. 2020) provides hourly estimates of atmospheric, land

and oceanic climate variables on a global scale and is available in the NetCDF format from

Copernicus Climate Data Store (CDS). This example demonstrates a case of analysing raster

spatio-temporal data using cubble, replicating Figure 19 from the Hersbach et al. (2020) paper.

The plot shows the southern polar vortex splitting into two on 2002-09-26, and further splitting

into four on 2002-10-04. Further explanation of why this is interesting can be found in the figure

source, and also in Simmons et al. (2020) and Simmons et al. (2005).

A ncdf4 object (Pierce 2019) can be converted into a cubble using as_cubble() and the NetCDF

data can be subsetted with arguments vars, long_range and lat_range. In this example, the
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Figure 3.4: Example of matching weather stations and river gauges. These four stations show on the
map (a) and time (b) would be considered to be matching. Precipitation and water level have
been standardised between 0 and 1 to be displayed in the same scale in (b). The peaks in the
time series roughly match, and would reflect percipitation increasing water levels.

variables q (specific humidity) and z (geopotential) are read in and the coordinates are subsetted

to every degree in longitude and latitude:

raw <- ncdf4::nc_open(here::here("data/cubble/era5-pressure.nc"))

(dt <- as_cubble(

raw, vars = c("q", "z"),

long_range = seq(-180, 180, 1), lat_range = seq(-88, -15, 1)))

# cubble: key: id [26640], index: time, nested form

# spatial: [-180, -88, 179, -15], Missing CRS!

# temporal: time [date], q [dbl], z [dbl]

id long lat ts

<int> <dbl> <dbl> <list>

1 1 -180 -15 <tibble [8 x 3]>

2 2 -179 -15 <tibble [8 x 3]>

3 3 -178 -15 <tibble [8 x 3]>

4 4 -177 -15 <tibble [8 x 3]>

5 5 -176 -15 <tibble [8 x 3]>

# i 26,635 more rows
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Once the NetCDF data is coerced into a cubble object, subsequent analysis can be conducted

to filter on the date of interest, scale the variable specific humidity and create visualisation in

ggplot to reproduce the ERA5 plot. A snippet of code to create Figure 3.5 is provided below

with additional codes needed to style the plot.

res <- dt |>

face_temporal() |>

filter(lubridate::date(time) %in%

as.Date(c("2002-09-22", "2002-09-26",

"2002-09-30", "2002-10-04"))) |>

unfold(long, lat) |>

mutate(q = q* 10ˆ6)

con <- rnaturalearth::ne_coastline("small", returnclass = "sf")

box <- st_bbox(c(xmin = -180, ymin = -90, xmax = 180, ymax = -15),

crs = st_crs(con))

country <- con |>

st_geometry() |>

st_crop(box) |>

st_cast("MULTILINESTRING")

res |>

ggplot() +

geom_point(aes(x = long, y = lat, color = q)) +

geom_contour(data = res, aes(x = long, y = lat, z = z), ...) +

geom_sf(data = country, ...) +

...

3.4.5 Australian temperature range

Interactive graphics can be especially useful for spatio-temporal data because they make it

possible to look at the data in multiple ways on-the-fly. This last example describes the process

of using cubble with the crosstalk package to build an interactive display connecting a map
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2002−09−22 2002−09−26 2002−09−30 2002−10−04

2.8 3.2 3.6
Specific humidity

Figure 3.5: An example illustrating that cubble can be used to readily reproduce common spatiotemporal
analyses. This plot of ERA5 reanalysis (Fig. 19, Hersbach et al, 2020) shows the break-up
of the southern polar vortex in late September and early October 2002. The polar vortex,
signalled by the high specific humidity, splits into two on 2002-09-26 and further splits into
four on 2002-10-04.

of Australia, with ribbon plots of temperature range observed at a group of stations in 2020. The

purpose is to explore the variation of monthly temperature range over the country.

Firstly, we summarise the daily data in climate_aus into monthly averages and calculate the

variance of the monthly averages differences between the minimum and maximum temperatures.

This variance will be used to color the temperature band later.

clean <- climate_aus |>

face_temporal() |>

mutate(month = lubridate::month(date)) |>

group_by(month) |>

summarise(

tmax = mean(tmax, na.rm = TRUE),

tmin = mean(tmin, na.rm = TRUE),

diff = mean(tmax - tmin, na.rm = TRUE)

) |>

face_spatial() |>

rowwise() |>

mutate(temp_diff_var = var(ts$diff, na.rm =TRUE))
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The spatial and temporal cubble are then created into shared crosstalk objects, plotted as

ggplots, and combined together using crosstalk::bscols():

sd_spatial <- clean |> SharedData$new(~id, group = "cubble")

sd_temporal <- clean |>

face_temporal() |>

SharedData$new(~id, group = "cubble")

p1 <- sd_spatial |> ggplot() + ...

p2 <- sd_temporal |> ggplot() + ...

crosstalk::bscols(plotly::ggplotly(p1), plotly::ggplotly(p2), ...)

Figure 3.6 shows three snapshots of the interactivity. Plot (a) shows the initial state of the

interactive display: all locations are shown as dots on the map, coloured by the temperature

range, and the right plot shows the ribbons representing maximum to minimum for all stations.

In plot (b) the station shows a high variance on the initial map, the “Mount Elizabeth” station, is

selected and this produces the ribbon on the right. In plot (c) the lowest temperature in August

is selected on the left map and this corresponds to the “Thredbo” station in the mountain area in

Victoria and New South Wales. This station is compared to a station in the Tasmania island, the

southernmost island of the country, selected on the map.
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Figure 3.6: Illustration of using cubble for interactive graphics. Here we explore temperature variation
by linking a map and a seasonal display. Each row is a screen dump of the process. The
top row shows all locations and all temperature profiles. Selecting a particular location on
the map (here Mount Elizabeth) produces the plot in the second row. The maximum and
minimum temperatures are shown using a ribbon. The bottom row first selects the lowest
temperature in August in the seasonal display, which highlights the corresponding station
on the map (Thredbo). Another station, located in the Tasmania Island, is then selected to
compare its temperature variation with the Thredbo station.
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3.5 Conclusion

This paper presents the R package cubble for organizing, wrangling and visualizing spatio-

temporal data. The package introduces a new data structure, cubble, consisting of two sub-

classes, spatial cubble and a temporal cubble, to organise spatio-temporal data in two different

formats within the tidy data framework. The data structure and functions introduced in the

package can be used and combined with existing tools for data wrangling, spatial and temporal

data analysis, and visualization.

The paper includes several examples to illustrate how cubble is useful for spatio-temporal

analysis. These examples cover different tasks of a typical data analysis workflow: handling

data with spatial and temporal misalignment, matching data from multiple sources, and creating

both static and interactive graphics. In addition, a re-working of an existing climate reanalysis

using cubble is explained.

Possible future directions would be in two main directions: handling much larger data sets,

and integrating smoothly with modeling. Spatio-temporal data can be huge, and the current

recommendation is to first reduce the spatial and temporal components before constructing a

cubble. Better support could be provided with additional pre-processing functions. Considerable

effort has been exerted to provide tidy tools for models, with the tidymodels project. It provides

a much better interface to the vast array of statistical and machine learning model architecture.

A similar direction would be to extend cubble to provide a more unified interface to spatio-

temporal modeling.
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Chapter 4

A Tidy Framework and Infrastructure

to Systematically Assemble Spatio-

temporal Indexes from Multivariate

Data

Indexes are useful for summarizing multivariate information into single metrics for monitoring,

communicating, and decision-making. While most work has focused on defining new indexes for

specific purposes, more attention needs to be directed towards making it possible to understand

index behavior in different data conditions, and to determine how their structure affects their

values and variation in values. Here we discuss a modular data pipeline recommendation to

assemble indexes. It is universally applicable to index computation and allows investigation of

index behavior as part of the development procedure. One can compute indexes with different

parameter choices, adjust steps in the index definition by adding, removing, and swapping

them to experiment with various index designs, calculate uncertainty measures, and assess

indexes’ robustness. The paper presents three examples to illustrate the pipeline framework

usage: comparison of two different indexes designed to monitor the spatio-temporal distribution

of drought in Queensland, Australia; the effect of dimension reduction choices on the Global

Gender Gap Index (GGGI) on countries’ ranking; and how to calculate bootstrap confidence
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intervals for the Standardized Precipitation Index (SPI). The methods are supported by a new R

package, called tidyindex.

4.1 Introduction

Indexes are commonly used to combine and summarize different sources of information into a

single number for monitoring, communicating, and decision-making. They serve as critical tools

across the natural and social sciences. Examples include the Air Quality Index, El Niño-Southern

Oscillation Index, Consumer Price Index, QS University Rankings, and the Human Development

Index. In environmental science, climate indexes are produced by major monitoring centers,

like the United States Drought Monitor and National Oceanic and Atmospheric Administration,

to facilitate agricultural planning and early detection of natural disasters. In economics, indexes

provide insight into market trends through combining prices of a basket of goods and services.

In social sciences, indexes are used to monitor human development, gender equity, or university

quality. The problem is that every index is developed in its own unique way, by different

researchers or organizations, and often indexes designed for the same purpose cannot easily be

compared.

To construct an index, experts typically start by defining a concept of interest that requires

measurement. This concept often lacks a direct measurable attribute or can only be measured as

a composite of various processes, yet it holds social and public significance. To create an index,

once the underlying processes involved are identified, relevant and available variables are then

defined, collected, and combined using statistical methods into an index that aims to measure

the process of interest. The construction process is often not straightforward, and decisions

need to be made, such as the selection of variables to be included, which might depend on data

availability and the statistical definition of the index to be used, among others. For instance, the

indexes constructed from a linear combination of variables require to decide the weight assigned

to each variable. Some indexes have a spatial and/or temporal component, and variables can be

aggregated to different spatial resolutions and temporal scales, leading to various indexes for

different monitoring purposes. Hence, all these decisions can result in different index values

and have different practical implications.

To be able to test different decision choices systematically for an index, the index needs to be

broken down into its fundamental building blocks to analyze the contribution and effect of each
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component. We call this process of breaking the index construction into different steps the index

pipeline. Such decomposition of index components provides the means to standardize index

construction via a pipeline and offers benefits for comparing among indexes, calculating index

uncertainty, and assessing index robustness.

In this work, we provide statistical and computational methods for developing a data pipeline

framework to construct and customize indexes using data. The proposed pipeline comprises

various modules, including temporal and spatial aggregation, variable transformation and

combination, distribution fitting, benchmark setting, and index communication. Given the

decisions analysts need to make when combining multivariate data into indexes, the proposed

pipeline enables the evaluation of how the specific choice can affect the index, as well as how

the index may appear under alternative options. Furthermore, uncertainty calculation can also

flow through the pipeline, providing the index with confidence measures.

The rest of the paper is structured as follows. Section 4.2 provides background about the

development of indexes. Section 4.3 reviews the tidy framework in R and how index construction

can benefit from such a framework. The details of the pipeline modules are presented in

Section 4.4. Section 4.5 explains the design of the tidyindex package that implements the

modules. Examples are given in Section 4.6 to illustrate three use cases of the pipeline.

4.2 Background to index development

There are many documents providing advice on how to construct indexes for different fields,

and review articles describing the range of available indexes for specific purposes. The OECD

handbook (OECD, European Union, and Joint Research Centre - European Commission 2008)

provides a comprehensive guide for computing socio-economic composite indexes, with detailed

steps and recommendations. The drought index handbook (Svoboda, Fuchs, et al. 2016)

provides details of various drought indexes and recommendations from the World Meteorology

Organization. Zargar et al. (2011), Hao and Singh (2015) and Alahacoon and Edirisinghe (2022)

are review papers describing the range of possible drought indexes.

There is also some attention being given to the diagnosis of indexes, and incorporation of

uncertainty. B. Jones and Andrey (2007) investigates the methodological choices made in the

development of indexes for assessing vulnerable neighborhoods. Saisana, Saltelli, and Tarantola
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(2005) describes incorporating uncertainty estimates and conducting sensitivity analysis on com-

posite indexes. Tate (2012) and Tate (2013), similarly, make a comparative assessment of social

vulnerability indexes based on uncertainty estimation and sensitivity analysis. Laimighofer and

Laaha (2022) studies five uncertainty sources (record length, observation period, distribution

choice, parameter estimation method, and GOF-test) of drought indexes.

There are also a few R packages supporting index calculation. The SPEI package (Vicente-

Serrano, Beguería, and López-Moreno 2010) computes two drought indexes. The gpindex

package (Martin 2023) computes price indexes, and the fundiversity package (Grenié and

Gruson 2023) computes functional diversity indexes for ecological study. The package COINr

(Becker et al. 2022) is more ambitious, making a start on following the broader guidelines in the

OECD handbook to construct, analyze, and visualize composite indexes.

From reviewing this literature, and in the process of developing methods for making it easier to

work with multivariate spatio-temporal data, it seems possible to think about indexes in a more

organised, cohesive and standard manner. Actually, the area could benefit from a tidy approach.

4.3 Tidy framework

The tidy framework consists of two key components: tidy data and tidy tools. The concept

of tidy data (Wickham 2014) prescribes specific rules for organizing data in an analysis, with

observations as rows, variables as columns, and types of observational units as tables. Tidy tools,

on the other hand, are concatenated in a sequence through which the tidy data flows, creating a

pipeline for data processing and modeling. These pipelines are data-centric, meaning all the tidy

tools or functions take a tidy data object as input and return a processed tidy data object, directly

ready for the next operations to be applied. Also, the pipeline approach corresponds to the

modular programming practice, which breaks down complex problems into smaller and more

manageable pieces, as opposed to a monolithic design, where all the steps are predetermined

and integrated into a single piece. The flexibility provided by the modularity makes it easier to

modify certain steps in the pipeline and to maintain and extend the code base.

Examples of using a pipeline approach for data analysis can be traced back to the interactive

graphics literature, including Buja et al. (1988); Sutherland et al. (2000); Wickham et al. (2009);

Xie, Hofmann, and Cheng (2014). Wickham et al. (2009) argue that whether made explicit or

not, a pipeline has to be presented in every graphics program, and making them explicit is
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beneficial for understanding the implementation and comparing between different graphic

systems. While this comment is made in the context of interactive graphics programs, it is also

applicable generally to any data analysis workflow. More recently, the tidyverse suite (Wickham

et al. 2019) takes the pipeline approach for general-purpose data wrangling and has gained

popularity within the R community. The pipeline-style code can be directly read as a series of

operations applied successively on tidy data objects, offering a method to document the data

wrangling process with all the computational details for reproducibility.

Since the success of tidyverse, more packages have been developed to analyze data using the

tidy framework for domains specific applications, a noticeable example of which is tidymodels

for building machine learning models (Kuhn and Wickham 2020). To create a tidy workflow

tailored to a specific domain, developers first need to identify the fundamental building blocks

to create a workflow. These components are then implemented as modules, which can be

combined to form the pipeline. For example, in supervised machine learning models, steps such

as data splitting, model training, and model evaluation are commonly used in most workflow.

In the tidymodels, these steps are correspondingly implemented as package rsample, parsnip,

and yardstick, agnostic to the specific model chosen. The uniform interface in tidymodels

frees analysts from recalling model-specific syntax for performing the same operation across

different models, increasing the efficiency to work with different models simultaneously.

For constructing indexes, the pipeline approach adopts explicit and standalone modules that

can be assembled in different ways. Index developers can choose the appropriate modules and

arrange them accordingly to generate the data pipeline that is needed for their purpose. The

pipeline approach provides many advantages:

• makes the computation more transparent, and thus more easily debugged.

• allows for rapidly processing new data to check how different features, like outliers, might

affect the index value.

• provides the capacity to measure uncertainty by computing confidence intervals from

multiple samples as generated by bootstrapping to original data.

• enables systematic comparison of surrogate indexes designed to measure the same phe-

nomenon.

• it may even be possible to automate diagrammatic explanations and documentation of the

index.
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Adoption of this pipeline approach would provide uniformity to the field of index development,

research, and application to improve comparability, reproducibility, and communication.

4.4 Details of the index pipeline

In constructing various indexes, the primary aim is to transform the data, often multivariate,

into a univariate index. Spatial and temporal considerations are also factored into the process

when observational units and time periods are not independent. However, despite the variations

in contextual information for indexes in different fields, the underlying statistical methodology

remains consistent across diverse domains. Each index can be represented as a series of modular

statistical operations on the data. This allows us to decompose the index construction process

into a unified pipeline workflow with a standardized set of data processing steps to be applied

across different indexes.

An overview of the pipeline is presented in ?@fig-pipeline-steps, illustrating the nine available

modules designed to obtain the index from the data. These modules include operations for

temporal and spatial aggregation, variable transformation and combination, distribution fitting,

benchmark setting, and index communication. Analysts have the flexibility to construct indexes

by connecting modules according to their preferences.

Now, we introduce the notation used for describing pipeline modules. Consider a multivariate

spatio-temporal process,

x(s; t) = {x1(s; t), x2(s; t), · · · , xp(s; t)} s ∈ Ds ⊆ Rm, t ∈ Dt ⊆ Rn (4.1)

where:

• xj(s, t) represents a variable of interest for example precipitation, j = 1, · · · , p and

• s represents the geographic locations in the space Ds ⊆ Rm. Examples of geographic

locations include a collection of countries, longitude and latitude coordinates or regions of

interest and,

• t denotes the temporal order in Dt ⊆ Rn. For instance, time measurements could be

recorded hourly, yearly, monthly, quarterly, or by season.
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In what follows when geographic or temporal components of the xj(s, t) process are fixed we

will be using suffix notation. For example, xsj(t) represents the data for a fixed location s as a

function of time t. While xtj(s) denotes the spatial varying process for a fixed t. An overview of

the notation for pipeline input, operation, and output is present in Table 1:

4.4.1 Temporal processing

The temporal processing module takes as input argument a single variable xsj(t) at location s

as a function of time. In this step the original time series can be transformed or summarized

into a new one via time aggregation, the transformation is represented by the function f ,

xTemp
sj (t′) = f [xsj(t)] where t′ refers to the new temporal resolution after aggregation. An

example of temporal processing done in the computation of the Standardized Precipitation

Index (SPI) (McKee et al. 1993), consists of summing the monthly precipitation series over a

rolling time window of size k. That is also known as the time scale. For SPI, the choice of the time

scale k is used to control the accumulation period for the water deficit, enabling the assessment

of drought severity across various types (meteorological, agricultural, and hydrological).

4.4.2 Spatial processing

The spatial processing module takes a single variable with a fixed temporal dimension, xtj(s),

as input. This step transforms the variable from the original spatial dimension s into the new
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dimension s′ ∈ Ds′ through xSpat
tj (s′) = g[xtj(s)]. The change of spatial dimension allows for

the alignment of variables collected from different measurements, such as in-situ stations and

satellite imagery, or originating from different resolutions. This also includes the aggregation of

variables into different levels, such as city, state, and country scales.

4.4.3 Variable transformation

Variable transformation takes the input of a single variable xj(s; t) and reshapes its distribution

using the function T[.] to produce xTrans
j (s; t). When a variable has a skewed distribution,

transformations such as log, square root, or cubic root can adjust the distribution towards

normality. For example, in the Human Development Index (HDI), a logarithmic transformation

is applied to the variable Gross National Income per capita (GNI), to reduce its impact on HDI,

particularly for countries with high GNI values.

4.4.4 Scaling

Unlike variable transformation, scaling maintains the distributional shape of the variable. It

includes techniques such as centering, z-score standardization, and min-max standardization

and can be expressed as [xj(s; t)− α]/γ. In the Human Development Index (HDI), the three

dimensions (health, education, and economy) are converted into the same scale (0-1) using

min-max standardization.

Although the scaling might be considered to be a transformation, we have elected to make it a

separate module because it is neater. Scaling simply changes the numbers in the data not the

shape of a variable. Transformation will most likely change the shape, and is usually non-linear.

4.4.5 Dimension reduction

Dimension reduction takes the multivariate information x(s; t), where x ⊆ Rp, or a subset

of variables in x(s; t), as the input. It summarises the high-dimensional information into a

lower-dimension representation y(s; t), where y ⊆ Rd and d < p, as the output. The transfor-

mation can be based on domain-specific knowledge, originating from theories describing the

underlying physical processes, or guided by statistical methods. For example, the Standardized

Precipitation-Evapotranspiration Index (SPEI) (Beguería and Vicente-Serrano 2017) calculates

the difference D between precipitation (P) and potential evapotranspiration (PET), using a
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Figure 4.1: Comparison of the module scaling (green) and variable transformation (orange). While both
modules change the variable range, scaling maintains the same distributional shape, which is
not the case with variable transformation.

water balance model (D = P − PET). This is the only step that differs from the Standardized

Precipitation Index (SPI), and can be considered to be a dimension reduction using a particular

linear combination.

Linear combinations of variables are commonly used to reduce the dimension in statistical

methodology, and chosen using a method like principal component analysis (PCA) (Hotelling

1933) or linear discriminant analysis (Fisher 1936), preparing contrasts to test particular ele-

ments in analysis of variance (Fisher 1970), or hand-crafted by a content-area expert. Linear

combinations also form the basis for visualizing multivariate data, in methods such as tours

(Wickham et al. 2011). This dimension reduction method can accommodate linear combinations

as provided by any method, and hence is linear by design. The transformation module provides

variable-wise non-linear transformation.
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4.4.6 Distribution fit

Distribution fit applies the Cumulative Distribution Function (CDF) F of a distribution on the

variable xj(s; t) to obtain the probability values Pj(s; t) ∈ [0, 1]. In SPEI, many distributions,

including log-logistic, Pearson III, lognormal, and general extreme distribution, are candidates

for the aggregated series. Different fitting methods and different goodness of fit tests may be

used to compare the distribution choice on the index value. This could be considered to be a

variable transformation because it is usually conducted separately for each variable. However,

very occasionally a fit is conducted on two or more variables simultaneously. For this reason,

and because it usually is applied later in the pipeline it is neater to make this a separate module.

4.4.7 Normalising

Normalizing applies the inverse normal CDF Φ−1 on the input data to obtain the normal density

zj(s; t). Normalizing can sometimes be confused with the scaling or variable transformation

module, which does not involve using a normal distribution to transform the variable. It is

arguably whether normalizing and distribution fit should be combined or separated into two

modules. A decision has been made to separate them into two modules given the different

types of output each module presents (probability values for distribution fit and normal density

values for normalizing).

4.4.8 Benchmarking

Benchmark sets a value bj(s, t) for comparing against the original variable xj(s; t). This bench-

mark can be a fixed value consistently across space and time or determined by the data through

the function u[xj(s; t)]. Once a benchmark is set, observations can be highlighted for adjustments

in other modules or can serve as targets for monitoring and planning.

4.4.9 Simplification

Simplification takes a continuous variable xj(s; t) and categorises it into a discrete set Aj(s; t) ∈

{a1, a2, · · · , az} through a piecewise constant function,
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v[xi(s; t)] =



a0 C1 ≤ xi(s; t) < C0

a1 C2 ≤ xi(s; t) < C1

a2 C3 ≤ xi(s; t) < C2

· · ·

az Cz ≤ xi(s; t)

(4.2)

This is typically used at the end of the index pipeline to simplify the index to communicate to the

public the severity of the concept of interest measured by the index. An example of simplification

is to map the calculated SPI to four categories: mild, moderate, severe, and extreme drought.

4.5 Software design

The R package tidyindex implements a proof-of-concept of the index pipeline modules de-

scribed in Section 4.4. These modules compute an index in a sequential manner, as shown

below:

DATA |>

module1(...) |>

module2(...) |>

module3(...) |>

...

Each module offers a variety of alternatives, each represented by a distinct function.

For example, within the dimension_reduction() module, three methods are available:

aggregate_linear(), aggregate_geometrical(), and manual_input() and they can be

used as:

dimension_reduction(V1 = aggregate_linear(...))

dimension_reduction(V2 = aggregate_geometrical(...))

dimension_reduction(V3 = manual_input(...))

Each method can be independently evaluated as a recipe, for example,
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manual_input(~x1 + x2)

takes a formula to combine the variables x1 and x2 and return:

[1] "manual_input"

attr(,"formula")

[1] "x1 + x2"

attr(,"class")

[1] "dim_red"

This recipe will then be evaluated in the pipeline module with data to obtain numerical results.

The package also offers wrapper functions that combine multiple steps for specific indexes. For

instance, the idx_spi() function bundles three steps (temporal aggregation, distribution fit,

and normalizing) into a single command, simplifying the syntax for computation. Analysts are

also encouraged to create customized indexes from existing modules.

idx_spi <- function(...){

DATA |>

temporal_aggregate(...) |>

distribution_fit(...)|>

normalise(...)

}

The accompanied package, tidyindex, is not intended to offer an exhaustive implementation for

all indexes across every domains. Instead, it provides a realization of the pipeline framework

proposed in the paper. When adopting the pipeline approach to construct indexes, analysts

may consider developing software that can be readily deployed in the cloud for production

purposes.

4.6 Examples

This section uses the example of drought and social indexes to show the analysis made possible

with the index pipeline. The drought index example computes two indexes (SPI and SPEI)

with various time scales and distributions simultaneously using the pipeline framework to
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understand the flood and drought events in Queensland. The second example focuses on the

dimension reduction step in the Global Gender Gap Index to explore how the changes in linear

combination weights affect the index values and country rankings.

4.6.1 Every distribution, every scale, every index all at once

The state of Queensland in Australia frequently experiences natural disaster events such as flood

and drought, which can significantly impact its agricultural industry. This example uses daily

data from Global Historical Climatology Network Daily (GHCND), aggregated into monthly

precipitation, to compute two drought indexes – SPI and SPEI – at various time scales and fitted

distributions, for 29 stations in the state of Queensland in Australia, spanning from January 1990

to April 2022. This example showcases the basic calculation of indexes with different parameter

specifications within the pipeline framework. The dataset used in this example is available in

the tidyindex package as queensland and blow prints the first few rows of the data:

# A tibble: 5 x 9

id ym prcp tmax tmin tavg long lat name

<chr> <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>

1 ASN00029038 1990 Jan 1682 34.3 24.7 29.5 142. -15.5 KOWANYAMA ~

2 ASN00029038 1990 Feb 416 35.2 23.2 29.2 142. -15.5 KOWANYAMA ~

3 ASN00029038 1990 Mar 2026 32.5 23.6 28.0 142. -15.5 KOWANYAMA ~

4 ASN00029038 1990 Apr 597 32.9 17.7 25.3 142. -15.5 KOWANYAMA ~

5 ASN00029038 1990 May 244 31.8 20.1 25.9 142. -15.5 KOWANYAMA ~

Figure 4.2 illustrates the pipeline steps of the two indexes. The two indexes are similar with

the distinct that SPEI involves two additional steps – variable transformation and dimension

reduction – prior to temporal processing. As introduced in Section 4.5, wrapper functions are

available for both indexes as idx_spi() and idx_spei(), which allows for the specification of

different time scales and distributions for fitting the aggregated series. In tidyindex, multiple

indexes can be calculated collectively using the function compute_indexes(). Both SPI and

SPEI are calculated across four time scales (6, 12, 24, and 36 months). The SPEI is fitted with two

distributions (log-logistic and general extreme value distribution) and the gamma distribution

is used for SPI:
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Figure 4.2: Index pipeline for two drought indexes: the Standardized Precipitation Index (SPI) and the
Standardized Precipitation-Evapotranspiration Index (SPEI). Both indexes share similar
construction steps with SPEI having two steps additional steps (variable transformation and
dimension reduction) to convert temperature into evapotranspiration and combine it with
the precipitation series.

.scale <- c(6, 12, 24, 36)

idx <- queensland %>%

mutate(month = lubridate::month(ym)) |>

init(id = id, time = ym, group = month) |>

compute_indexes(

spei = idx_spei(

.tavg = tavg, .lat = lat,

.scale = .scale, .dist = list(dist_gev(), dist_glo())),

spi = idx_spi(.scale = .scale)

)

# A tibble: 128,576 x 14

.idx .dist id ym prcp tmax tmin tavg long lat

<chr> <chr> <chr> <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 spei gev ASN000290~ 1990 Jun 170 29.7 16.2 23.0 142. -15.5

2 spei gev ASN000290~ 1990 Jul 102 31.2 17.2 24.2 142. -15.5

3 spei gev ASN000290~ 1990 Aug 0 31.3 13.1 22.2 142. -15.5

4 spei gev ASN000290~ 1990 Sep 0 32.8 16.3 24.5 142. -15.5
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5 spei gev ASN000290~ 1990 Oct 0 36.8 21.5 29.2 142. -15.5

6 spei gev ASN000290~ 1990 Nov 278 36.3 24.8 30.6 142. -15.5

7 spei gev ASN000290~ 1990 Dec 1869 34.4 24.5 29.4 142. -15.5

8 spei gev ASN000290~ 1990 Dec 1869 34.4 24.5 29.4 142. -15.5

9 spei gev ASN000290~ 1991 Jan 5088 31.2 24.4 27.8 142. -15.5

10 spei gev ASN000290~ 1991 Jan 5088 31.2 24.4 27.8 142. -15.5

# i 128,566 more rows

# i 4 more variables: name <chr>, month <dbl>, .scale <dbl>,

# .value <dbl>

The output contains the original data, index values (.index), parameters used (.scale, .method,

and .dist), and all the intermediate variables (pet, .agg, and .fitted). This data can be

visualized to investigate the spatio-temporal distribution of the drought or flood events, as

well as the response of index values to different time scales and distribution parameters at

specific single locations. Figure 4.3 and Figure 4.4 exemplify two possibilities. Figure 4.3

presents the spatial distribution of SPI during two periods: October 2010 to March 2011 for

the 2010/11 Queensland flood and October 2019 to March 2020 for the 2019 Australia drought,

which contributes to the notorious 2019/20 bushfire season. Figure 4.4 displays the sensitivity

of the SPEI series at the Texas post office to different time scales and fitted distributions. Larger

time scales produce a smoother index across time, however, all time scales indicate an extreme

drought (corresponding to -2 in SPEI) in 2020, confirming the severity of the drought across

different time horizons. Moreover, the chosen distribution has less influence on the index, with

general extreme value distribution tending to produce more extreme outcomes than log-logistic

distribution for the extreme events (index > 2 or <-2).

4.6.2 Does a puff of change in variable weights cause a tornado in ranks?

The Global Gender Gap Index (GGGI), published annually by the World Economic Forum,

measures gender parity by assessing relative gaps between men and women in four key areas:

Economic Participation and Opportunity, Educational Attainment, Health and Survival, and

Political Empowerment (World Economic Forum 2023). The index, defined on 14 variables

measuring female-to-male ratios, first aggregates these variables into four dimensions (using

the linear combination given by V-wgt in Table 4.1). The weights are the inverse of the standard
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Figure 4.3: Spatial distribution of Standardized Precipitation Index (SPI-12) in Queensland, Australia
during two major flood and drought events: 2010/11 and 2019/20. The map shows a
continuous wet period during the 2010/11 flood period and a mitigated drought situation,
after its worst in 2019 December and 2020 January, likely due to the increased rainfall in
February from the meteorological record.
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Figure 4.4: Time series plot of Standardized Precipitation-Evapotranspiration Index (SPEI) at the Texas
post office station (highlighted by a diamond shape in panel a). The SPEI is calculated at four
time scales (6, 12, 24, and 36 months) and fitted with two distributions (Log Logistic and
GEV). The dashed line at -2 represents the class “extreme drought” by the SPEI. A larger
time scale gives a smoother index series, while also taking longer to recover from an extreme
situation as seen in the 2019/20 drought period. The SPEI values from the two distribution
fit mostly agree, while GEV can result in more extreme values, i.e. in 1998 and 2020.
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Figure 4.5: Index pipeline for the Global Gender Gap Index (GGGI). The index is constructed as applying
the module dimension reduction twice on the data.

Table 4.1: Weights for the two applications of dimension reduction to compute the Global Gender Gap
Index. V-wgt is used to compute four new variables from the original 14. These are then
equally combined to get the final index value.

Variable V-wgt Dimension D-wgt wgt

Labour force participation 0.199 Economy 0.25 0.050
Wage equality for similar work 0.310 0.078
Estimated earned income 0.221 0.055
Legislators senior officials and
managers

0.149 0.037

Professional and technical workers 0.121 0.030
Literacy rate 0.191 Education 0.25 0.048
Enrolment in primary education 0.459 0.115
Enrolment in secondary education 0.230 0.058
Enrolment in tertiary education 0.121 0.030
Sex ratio at birth 0.693 Health 0.25 0.173
Healthy life expectancy 0.307 0.077
Women in parliament 0.310 Politics 0.25 0.078
Women in ministerial positions 0.247 0.062
Years with female head of state 0.443 0.111

deviation of each variable, scaled to sum to 1, thus ensuring equal relative contribution of each

variable to each of the four new variables. These new variables are then combined through

another linear combination (D-wgt in Table 4.1) to form the final index value. Figure 4.5

illustrates that the pipeline is constructed by applying the dimension reduction module twice

on the data. The data for GGGI does not needs to be transformed or scaled so these steps are not

included, but they might still need to be used for other similar indexes.

The 2023 GGGI data is available from the Global Gender Gap Report 2023 in the country’s

economy profile and can be accessed in the tidyindex package as gggi with Table 4.1 as

gggi_weights. The index can be reproduced with:
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gggi %>%

init(id = country) %>%

add_meta(gggi_weights, var_col = variable) %>%

dimension_reduction(

index_new = aggregate_linear(

~labour_force_participation:years_with_female_head_of_state,

weight = weight))

After initializing the gggi object and attaching the gggi_weights as meta-data, a single lin-

ear combination within the dimension reduction module is applied to the 14 variables (from

column labour_force_participation to years_with_female_head_of_state), using the

weight specified in the wgt column of the attached metadata. While computing the index from

the original 14 variables, it remains unclear how the missing values are handled within the

index, which impacts 68 out of the total 146 countries. However, after aggregating variables

into the four dimensions, where no missing values exist, the index is reproducible for all the

countries.

Figure 4.6 illustrates doing sensitivity analysis for GGGI, for a subset of 16 countries. Frame

12 shows the dot plot of the original index values sorted from highest to lowest. Leading the

rankings are the Nordic countries (Iceland, Norway, and Finland) and New Zealand. The index

values are between 0 and 1, and indicate proportional difference between men and women, with

a value of 0.8 indicating women are 80% of the way to equality of these measures. There is a gap

in values between these countries and the middle group (Brazil, Panama, Poland, Bangladesh,

Kazakhstan, Armenia, and Slovakia), and another big drop to the next group (Pakistan, Iran,

Algeria, and Chad). Afghanistan lags much further behind.

To make a simple illustration of sensitivity analysis, we slightly vary the weight for politics,

between 0.07 and 0.52, while maintain equal weights among other dimensions. This can be

viewed as an animation to examine change in relative index values as a response to the changing

weights. This visualization technique, which presents a sequence of data projections, is referred

to as a “tour” and the specific kind of tour used here to move between nearby projections is

known as a “radial tour” (see Buja et al. (2005), Wickham et al. (2011), and Spyrison and Cook

(2020) for more details).
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Figure 4.6: Exploring the sensitivity of the GGGI, by varying the politics component’s contribution,
for a subset of countries. Each panel shows a dotplot of the index values, computed for the
linear combination represented by the segment plots below. Frame 12 shows the actual GGGI
values, and countries are sorted from highest to lowest on this. Frames 1 and 6 show the
GGGI if the politics component is reduced. Frames 18, 24, 29 show the GGGI when the
politics component is increased. The most notable feature is that Bangladesh’s GGGI drops
substantially when politics is removed, indicating that this component plays a large role
in it’s relatively high value. Also, politics plays a substantial role in the GGGI’s for the
top ranked countries, because each of them drops, to the state of being similar to the middle
ranked countries when the politics component’s contribution is reduced. The animation can
be viewed at https://vimeo.com/847874016.
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Frames 1 and 6 show linear combinations where politics contributes less than the original. It is

interesting to note that the gap between the Nordic countries and the middle countries dissipates,

indicating that this component was one reason for the relatively higher GGGI values of these

countries. Also interesting is the large drop in value for Bangladesh.

Frames 18, 24, 29 show linear combinations where politics contributes more than the original.

The most notable feature is that Bangladesh retains it’s high index value whereas the other

middle group countries decline, indicating that the politics score is a major component for

Bangladesh’s index value.

Ideally, an index should be robust against minor changes in its construction components. This is

not the case with GGGI, where small changes to one component lead to fairly large change in

the index. The modular pipeline framework for computing the index makes it easy to conduct

this type of sensitivity analysis, where one or more components are perturbed and the index

re-calculated. One aspect of the GGGI not well-described in the Global Gender Gap Report is

handling of missing values that are present in the initial variables for many countries, something

that is common for this type of data. This could also be made more transparent with the

dimension reduction module, by specifying an imputation method or providing warnings about

missing values.

4.6.3 Decoding uncertainty through the wisdom of the crowd

Errors in measurement, variability and sampling error, may arise at various stages of the pipeline

calculation, including from different parameterization choices, as illustrated from Section 4.6.1,

or from the statistical summarization procedures applied in the pipeline. Although it may not be

possible to perfectly measure these errors, it is important that they are recognised and estimated

for an index, so that it is possible to compute confidence intervals. In this example, the Texas

post office station highlighted in Figure 4.4 is used to illustrate one possibility to compute a

confidence interval for the Standardized Precipitation Index (SPI). Bootstrapping is used to

account for the sampling uncertainty in the distribution fit step of the index pipeline and to

assess its impact on the SPI series.

In SPI, the distribution fit step fits the gamma distribution to the aggregated precipitation series

separately for each month. This results in 32 or 33 points, from January 1990 to April 2022,

for estimating each set of distribution parameters. To account for this sampling uncertainty

84



CHAPTER 4. A TIDY FRAMEWORK AND INFRASTRUCTURE TO SYSTEMATICALLY ASSEMBLE
SPATIO-TEMPORAL INDEXES FROM MULTIVARIATE DATA

with these samples, bootstrapping is used to generate replicates of the aggregated series. In the

tidyindex package, this bootstrap sampling is activated when the argument .n_boot is set to a

value other than the default of 1. In the following code, the Standardized Precipitation Index

(SPI) is calculated using a time scale of 24. The bootstrap procedure samples the aggregated

precipitation (.agg) for 100 iterations (.n_boot = 100) and then fits the gamma distribution.

The resulting gamma probabilities are then transformed into normal densities in the normalizing

step with normalise().

DATA |>

temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 24)) |>

distribution_fit(.fit = dist_gamma(var = ".agg", method = "lmoms",

.n_boot = 100)) |>

normalise(.index = norm_quantile(.fit))

The confidence interval can then be calculated using the quantile method from the bootstrap

samples. Figure 4.7 presents the 80% and 95% confidence interval for the Texas post office

station, in Queensland, Australia. From the start of 2019 to 2020, the majority of the confidence

intervals lie below the extreme drought line (SPI = -2), suggesting a high level of certainty that

the Texas post office is suffering from a drastic drought. The relatively wide confidence interval,

as well as during the excessive precipitation events in 1996-1998 and 1999-2000, suggests a high

variation of the gamma parameters estimated from the bootstrap samples and its difficulty to

accurately quantify the drought and flood severity in extreme events.
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Figure 4.7: 80% and 95% confidence interval of the Standardized Precipitation Index (SPI-24) for the
Texas post office station, in Queensland, Australia. A bootstrap sample of 100 is taken from
the aggregated precipitation series to estimate gamma parameters and to calculate the index.
The dashed line at SPI = -2 represents an extreme drought as defined by the SPI. Most parts
of the confidence intervals from 2019 to 2020 sit below the extreme drought line and are
relatively wide compared to other time periods. This suggests that while it is certain that
the Texas post office is suffering from a drastic drought, there is considerable uncertainty in
quantifying its severity, given the extremity of the event.

4.7 Conclusion

The paper introduces a data pipeline comprising nine modules designed for the construction and

analysis of indexes within the tidy framework. The pipeline offers a modular workflow to allow

compute index with different parameterizations, to test minor changes to the original index

definition, and to quantify uncertainties. The framework proposed in the paper is universal to

index across diverse domains. Examples are provided, including the drought indexes (SPI and

SPEI) and Global Gender Gap Index (GGGI), to demonstrate the index calculation with different

time scales and distributions, to illustrate how slight adjustment of linear combination weights

impact the index, and to calculate confidence intervals on the index.
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Conclusion

The three pieces of work in this thesis focus on diagnostics, data structure, and the pipeline

workflow of contemporary multivariate spatio-temporal data. Chapter 2 introduces four plots

that provide diagnostics of projection pursuit optimisation. When combined with guided tour,

we can visualise the optimisation path of high-dimensional projection bases. While it is difficult

to overcome failure encountered during optimisation in projection pursuit, the diagnostic plots

implemented in this work provide a visual tool to understand its cause. These plots have been

implemented in the R package ferrn, which has been on CRAN since March 2021 and has

received over 8000 downloads from the CRAN mirror.

Many scientific fields heavily rely upon spatio-temporal data, which comprise time series data

recorded at discrete locations. Examples of which include weather stations and river gauges. The

second topic of the thesis aims to provide benefit to environmental scientists by making it easier

to work with spatio-temporal data in different forms: pure spatial, pure temporal, and combined

spatio-temporal. Chapter 3 discusses a new spatio-temporal data structure, applicable to both

vector and raster data, that can easily pivot among these forms. Additionally, the data structure

is also compatible with modern spatial and temporal data structure (sf and tsibble). The data

structure is implemented in the cubble package, which has been on CRAN since August 2022

and has received over 45 stars on GitHub and over 5000 downloads from the CRAN mirror. The

presentation of cubble on the Early Career and Student Statisticians Miniconference 2022 has

won the People’s Choice award.
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Indexes are used in society to communicate complex multivariate information to the public or to

make decisions. For example, drought and climate indexes guide the early warning monitoring

systems in recommending actions for agriculture and other weather-dependent industries. The

third topic of the thesis orchestrates a wide array of indexes proposed in various fields (in

natural science, economics, and social science) to standardise the steps in index construction

and analysis. The data pipeline proposed in Chapter 4 suggests a set of modulated steps for

assembling indexes from multivariate spatio-temporal data under the tidy framework. The

suggested pipeline offers a unified syntax for performing tasks that are universally applicable to

indexes across all domains, including computing the index with different parameters, evaluating

the robustness of the index, and calculating uncertainty measures. The tiydindex package that

implements the data pipeline is currently a proof of concept for the pipeline workflow and is

planned to be submitted onto CRAN.

5.1 Future work

5.1.1 Optimisers for projection pursuit optimization

The optimisation in projection pursuit is a high-dimensional problem that aims to optimise the

interesting statistics, also called the index function, on the projection matrices. This objective

function could be non-linear, computationally expensive to calculate the gradient, and may have

local optima, which are also interesting for projection pursuit to explore, along with the global

optimum. When approaching a new problem, users often try the three available stochastic

optimizers introduced in Section 2.3.1, with different parameterizations, to find the optimizer

works the best for the problem on hand. Optimizers that have shown success in other domain

applications from the optimisation literature, such as genetic algorithms, can be tested for

performance in addressing the projection pursuit optimisation.

5.1.2 Extending the glyphmap to other glyphs

The cubble approach transforms the time series lines from the temporal coordinates to the spatial

coordinates and plots them as a glyph on the map. This is different from insetting a set of plots

onto a base map, which could lead to plot overlap when observations are closely located. The

glyph map approach can be generalised to transform different shapes including points and

polygons, or even plots, from one set of coordinate to another. This would allow to display
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more complex glyphs, for example, a scatterplot of two variables, against each other, to observe

multivariate spatio-temporal relationship simultaneously on the map.

5.1.3 Applying the tidyindex framework for domain specific indexes

The tidyindex work introduced in Chapter 4 can be further expanded into a suite of tools, like

tidymodel, for constructing and analysing indexes. The next step is to apply the index pipeline

to specific domains, for example, drought indexes. Drought is a natural phenomenon with

persistent lack of water and is monitored for meteorological, agricultural, hydrological, and

social economic purpose. Despite hundreds of drought indexes proposed in the literature, there

lacks a consensus among researchers on which index, or combination of indexes, to adopt for

practical problems. The tidyindex pipeline can be extended to domain-specific toolkits for

researchers to build, share, and compare their indexes.

5.2 Final remark

Figure 5.1 shows three five-letter words, each representing a keyword in the three main chapters

of this thesis, arranged in the layout of a Wordle puzzle. Interestingly, “glyph” emerged as the

Wordle solution on 18th November 2022, and “index” claimed its place on 15th August 2023 -

just before the thesis submission! This evokes a similar feeling to come across the crossword

clue “corolla leaf” (consider the variable name of the iris data), or alternatively, spot the Adélie

penguins in the Sea Life.

Figure 5.1: Keywords of the three main chapters of this thesis, arranged in the layout of a Wordle puzzle.
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